
Citation: Hui, Y.; Zu, H.; Song, R.; Fu,

H.; Luo, K.; Tian, C.; Wu, B.; Huang,

G.-L.; Kou, Z.; Cheng, X.; et al.

Graphene-Assembled Film-Based

Reconfigurable Filtering Antenna

with Enhanced Corrosion-Resistance.

Crystals 2023, 13, 747. https://

doi.org/10.3390/cryst13050747

Academic Editor: Andreas Thissen

Received: 10 April 2023

Revised: 26 April 2023

Accepted: 26 April 2023

Published: 29 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Graphene-Assembled Film-Based Reconfigurable Filtering
Antenna with Enhanced Corrosion-Resistance
Yueyue Hui 1,†, Haoran Zu 1,†, Rongguo Song 1,*, Huaqiang Fu 2, Kaolin Luo 1, Chao Tian 2, Bian Wu 3 ,
Guan-Long Huang 4 , Zongkui Kou 5, Xin Cheng 6,* and Daping He 1,*

1 Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science,
Wuhan University of Technology, Wuhan 430070, China; huiyueyue@whut.edu.cn (Y.H.);
hrzu@stu.xidian.edu.cn (H.Z.); 261162@whut.edu.cn (K.L.)

2 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
fuhuaqiang@whut.edu.cn (H.F.); tian_chao@whut.edu.cn (C.T.)

3 The National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi’an 710071, China;
bwu@mail.xidian.edu.cn

4 School of AI, Guangdong & Taiwan, Foshan University, Foshan 528225, China; hgl@fosu.edu.cn
5 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,

Wuhan University of Technology, Wuhan 430070, China; zongkuikou@whut.edu.cn
6 Hubei Institute of Quality Supervision and Inspection, Wuhan 430061, China
* Correspondence: rongguo_song@whut.edu.cn (R.S.); sharonxin@126.com (X.C.);

hedaping@whut.edu.cn (D.H.)
† These authors contributed equally to this work.

Abstract: Corrosion-resistance is the key to improve the reliability and service lifespan of highly
integrated reconfigurable filtering antennae. However, the conventional methodology for corrosion
prevention cannot achieve desired effects, due to the limited intrinsic corrosion-resistance capacity
of traditional metal-based devices. Here, we developed a reconfigurable filtering antenna based
on graphene assembled film (GAF), featuring significant corrosion-resistance enhancement. The
GAF-based antenna exhibits comparable electrical performance when compared with a copper-based
antenna, and can flexibly switch between two working modes, including ultra-wideband (UWB,
2.8–11 GHz) and narrowband filtering (NBF, 3.23–3.77 GHz). To further demonstrate the of the
corrosion-resistance of GAF, a salt spray corrosion test found that the GAF-based antenna exhibits
steady electrical properties after corrosion for over 336 h, while the copper-based antenna shows rapid
performance degradation. The simulated and experimental results are in agreement, indicating that
the proposed GAF reconfigurable filtering antenna can be applied to broader application prospects in
communication systems, especially in severe environments.

Keywords: graphene antenna; corrosion resistance; graphene assembled film; reconfigurable filtering
antenna; ultra-wideband

1. Introduction

The salient features of 5G mobile communication, such as high speed, large capac-
ity, and low delay, put forward the requirements of miniaturization, integration, and
multi-function for communication systems [1]. Filter and antenna, responsible for the
selective filtering and receiving/transmitting of signals respectively, are usually designed
independently, which enlarges the size of the radio frequency (RF) front-end and induces
excessive insertion loss, due to the direct cascade of filter and antenna [2]. To solve these
problems, filtering antennae, with filter and radiation functions, have received extensive
attention [3,4]. In order to further improve integration, the reconfigurable filtering antenna
has attracted much attention from antenna researchers [5–8]. The reconfigurable filtering
antenna has the advantages of improving antenna selectivity, weakening external parasitic
radiation/reception, and flexibly switching between different functions.
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Meanwhile, the anti-corrosion ability of an antenna system is an important index in
engineering applications, especially in high temperature and humidity environments [9–12].
With the development of communication systems, the number of antennae is increasing
sharply. Due to the inherent properties of metal, the traditional metal-based antennae
are readily corrodible, which not only causes great economic loss, but also has a negative
impact on the performance and service life of the antennae. In the existing research, there
are several traditional methods to improve the corrosion-resistance of antenna, which
are radome [13,14], protective paints [15–18], optimizing the structure of the antenna,
sacrificial anodes protection [19], and alloys with corrosion-resistance [20–23]. Radome
and spray paint can protect the antenna from the impacts of the harsh environment, such
as coastal cities [13–18]. Although those two methods are held in high regard in antennae
anticorrosion, the introduction of radiation loss, high maintenance frequency, and low
security are non-negligible shortcomings. Metal corrosion can be effectively reduced by
reducing the part of the overlapping gap on the structure of the antenna. However, the
disadvantages of this method are that corrosion-resistance is obtained by sacrificing the
antenna performance and there are requirements for the infrastructure of an antenna.
Sacrificial anode protections play an important role in metal protection, which have the
advantages of easy installation and less maintenance, but the replacement of a failed anode
is unaffordable [19]. Alloys with corrosion-resistance can also be used to protect an antenna
from corrosion, such as stainless steel, titanium alloy, metal glass, etc., but these methods
will lead to a reduction in the conductivity of the metal, which has a negative impact on the
radiation efficiency of the antenna [20–23]. To sum up, it is urgent to develop new materials
with good corrosion resistance and high electrical conductivity.

Graphene has significant advantages over conventional metal materials, in terms
of flexibility, lightweight, thermal conductivity, corrosion-resistance, and biological affin-
ity [24–27]. In previous works, the graphene-assembled film (GAF), with conductivity
up to 106 S/m, has been reported and applied to antennae designs in microwave and
millimeter-wave frequency bands, such as dipole antennae, wearable antennae, and con-
formal antennae [28–32]. These works demonstrate that GAF is characterized by a high
conductivity and flexibility, is lightweight, and has mechanical stability. However, studies
on the chemical stability of GAF in RF devices are still scarce. Meanwhile, the application
of GAF in complex and integrated antennae needs further research. Therefore, studying the
application of GAF in reconfigurable filtering antennae is of practical significance to reduce
the environmental impact on antennae and extend the service life of highly integrated
RF devices.

In this paper, a reconfigurable filtering antenna based on GAF is proposed. The
GAF-based antenna achieves frequency switching between the UWB state and the 3.5 GHz
NBF state using reconfigurable feeding networks and two PIN diodes. The operating
frequency bands of the UWB state and NBF state of the GAF antenna covers 2.8–11 GHz
and 3.23–3.77 GHz, respectively, with the maximum gain of 1.19–4.32 dBi and 2.32 dBi.
Meanwhile, the proposed GAF-based antenna maintains good physical appearance and
electrical performance in the salt spray test for two weeks. All experimental results show
that the designed reconfigurable filtering antenna based on GAF has a stable impedance
and radiation characteristics. Additionally, this work verifies the possibility for the multi-
functional filtering antenna to achieve corrosion-resistance without other methods of
metal protection.

2. Materials and Feasibility
2.1. Preparation of GAF

The precursor graphene oxide (GO) films were fabricated by casting GO gels onto a
PET film, and then letting them dry in ambient conditions. Heat treatments were performed
on the GO films successively up to 2850 ◦C. Firstly, the GO films were heated to 1300 ◦C with
a heating rate of 3 ◦C/min, and then heated again to 2850 ◦C with a heating rate of 5 ◦C/min.
The samples were finally roller compressed under 300 MPa to obtain density GAF.
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2.2. Characterization

The transmission electronic microscopic (TEM) images of graphene oxide (GO, Figure 1a)
were taken by high-resolution transmission electron microscopy (HRTEM, JEM-2100F
(Japan Electronics Corporation (JEOL), Japan)). The morphology of the transparent GO
nanosheets exhibited folds under thermodynamic action. This was further demonstrated by
homogenously dispersed GO nanosheets with a single atom layer, as shown in Figure 1b,c
under an atomic force microscope (AFM, Asylum research Cypher ES (AsylumResearch,
the United States of America (U.S.A.))), which is in favor of the high-quality preparation of
GAF. The thickness of GO is 1.3 nm, which is the same as [33], with a slight deviation being
the surface containing oxygen functional groups. The as-prepared GAF was depicted in
Figure 1d, demonstrating a high flexibility and metallic lustre, which indicates that GAF
can be used for the preparation of conformal antennae. The cross-sectional microstructure
of the GAF was taken on a filed-emission scanning electron microscope (SEM, JSM-7610F
Plus (Japan Electronics Corporation (JEOL), Germany)) at an accelerating voltage of 5 kV.
Figure 1e is the cross-sectional SEM image, indicating that the GAF, with the thickness
of 25 µm, has an orderly multilayer stacked structure. The honeycomb structure of GAF
nanosheets prepared by ultrasonic stripping suggests the high graphitization degree of
GAF, as shown in Figure 1f. The strong peak of GAF (002) at around 26.5◦ (X-ray diffraction
(XRD) pattern in Figure 1g), coupled with the intense G band in the GAF Raman spectra,
further demonstrates the high crystallization degree of GAF [34,35]. XRD was collected on
a Rikagu Smartlab using Cu Kα (λ = 1.5406 Å) radiation. The raman spectra were collected
on a confocal Witec spectrometer with 532 nm excitation. The raman spectroscopy of GAF
shows D and G peaks at 1347 cm−1 and 1584 cm−1, respectively, with the intensity ratio of
the D peak and G peak of GAF indicated ID/IG = ratio of 0.015. These results suggest that
GAFs have high graphitic structures and low defect concentration. In addition, owning to
the ultrahigh stability of covalent crosslinking of the sp2 hybridized carbon atoms, the GAF
exhibits excellent corrosion-resistance [33,36]. However, copper is unstable and susceptible
to oxidation since its surface forms a compound by absorbing oxygen or water from the
air [20]. One week after the salt spray test, the GAF maintains good physical properties,
while the copper surface is severely corroded, as shown in Figure 1h. Moreover, as shown
in Figure 1i, the quality of the GAF and copper with an area of 40 mm × 40 mm is tested.
The density of the GAF is 1.55 g/cm3, which is one fifth of the copper foil with the density
of 8.64 g/cm3. The lightweight GAF can effectively reduce the burden of the RF front-end,
providing great advantages in wearable and miniaturized electronic devices.

2.3. Feasibility

Power loss is one of the parameters that must be considered in microwave equipment,
so the conductivity of the conductor material plays an important role in the performance of
RF devices. The losses of the microstrip lines are mainly due to radiation loss, dielectric
loss, and conductor loss. Among these three losses, the conductivity of the conductor
material mainly affects the conductor loss. In the microwave RF band, in addition to the
loss of the microstrip line, attention should be paid to the ground plane resistance and the
propagation of the slow wave. Considering the above factors, Formulas (1)–(4) are adopted
to calculate the conductor loss αc at different conductivities,

αc =
R

2Z0
(1)

R =
1

2σZ0

[(
1

tw f

)p

+

[
1
δ

(
1

w f
+

1
w f + 2πhe−αtKα2πh

)]p]1/p

(2)

δ =
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2

ωσµ
=

1√
π f µσ

(3)
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αt =
√

β2
z − k2

0 (4)

where R is the resistance of the microstrip line, Z0 is the characteristic impedance of the
microstrip line with a width of wf, σ is the conductivity, δ is the skin depth, ω is the angular
frequency, t is the thickness of the conductor strip, f is the frequency, µ is the permeability,
h is the thickness of the dielectric substrate, αt is the transverse attenuation factor, βz is
the slow wave propagation constant, k0 is the free space wave number, Ka and p are the
correction factors, which are taken as 30 and 5, respectively.
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Figure 1. Characterizations and advantages of application in antenna of the GAF. (a) A typical TEM
image of GO nanosheets. (b) An AFM tapping mode image of GO nanosheets deposited on a silicon
substrate. (c) The corresponding height profiles of GO nanosheets measured along the red line in
the AFM image. (d) A digital photo of the GAF. (e) A typical cross-sectional SEM image of the
GAF with highly in-plane oriented structure. (f) A typical TEM image of GAF nanosheets prepared
by ultrasonic stripping. (g) The XRD pattern of GAF and the inset shows Raman spectra of GAF.
(h) Comparison of corrosion-resistance of GAF and copper. (i) The quality of GAF with 25 µm and
copper with 17 µm.
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Figure 2 shows the simulated relationship between the conductor loss and the conduc-
tivity of a 50 Ω microstrip line with a width of 2.54 mm at 3.5 GHz. The conductor loss αc of
the feeding line is inversely proportional to the conductivity to the power of half, according
to the Formulas (1)–(4). When the conductivity is between 104 and 105 S/m, the conductor
losses are large, with values of 1.9 dB/cm and 0.28 dB/cm, respectively. When the con-
ductivity is between 106–107 S/m, the conductor losses tend to approximate 0.08 dB/cm
and 0.03 dB/cm, respectively. Therefore, it is feasible for the GAF with a conductivity of
1.1 × 106 S/m to replace metal as the conductor material to design filtering antennae.
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3. Verification and Results Discussion
3.1. Design and Results of GAF-Based UWB Antenna

To obtain a wider frequency band, a circular monopole antenna, as shown in Figure 3a,
is chosen as the base structure of the UWB antenna. The proposed UWB antenna is designed
by introducing rectangular slots and branches on the circular monopole and making a
curved modification to the upper edge of the ground. The structure and parameters of the
designed UWB antenna are presented in Figure 3b. The conductor material of the UWB
antenna consists of the top layer and bottom layer, which is made of the GAF (Figure 3c).
The conductor layer (GAF) and the dielectric layer (Rogers 5880) are compounded together
by hot pressing [37]. The top layer of the UWB antenna is a modified circular-shape
monopole patch excited by a 50 Ω microstrip feeding line, and the bottom layer is the
ground plane. The GAF is attached to a 0.787 mm-thick Rogers 5880 substrate with a
relative permittivity (εr) of 2.2 and a loss tangent of 0.0004. The optimized UWB antenna
has good impedance matching and radiation characteristics at 3.1–11 GHz, which is better
than the initial monopole antenna, as shown in Figure 3d. The addition of slots and
branches introduces capacitive and inductive matching for the antenna, and the curved
improvement on the upper edge of the ground makes the impedance transformation of
the antenna smoother, which provides a good matching impedance for the antenna over a
wide-frequency band.
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Figure 3. Structure and performance of the designed GAF-based UWB antenna. (a) Layout of the
circular monopole. (b) Layout of the UWB antenna. (c) Digital photos of the GAF-based UWB
antenna. (d) Reflection of the GAF-based circular monopole and the designed GAF-based UWB
antenna. (Parameters: L1 = 50, W1 = 35, l1 = 23.98, l2 = 26.4, l3 = 4.43, l4 = 4.45, w1 = 2.54, w2 = 2.08,
w3 = 0.7, w4 = 0.8, w5 = 0.72, r1 = 9.1. unit: mm).

3.2. Design and Results of GAF-Based Bandpass Filter

To obtain excellent filtering characteristics for the antenna, a bandpass filter is designed
with the coupled feeding technology. To reduce the size and improve the flexibility, the
filter is designed as a two-order stepped impedance folded ring resonator (SIFRR). The
SIFRR consists of a stepped impedance resonator (SIR) folded into a ring. The physical
dimensions of the filter can be determined by the following formulas. From the open circuit
condition, input impedance Zin can be obtained as

Zin = jZ1
Z1tanθ1tanθ2 − Z2

Z1tanθ2 + Z2tanθ1
(5)

Zin = Rin + jXin (6)

the resonance condition of SIR is
Xin = 0 (7)

Then
RZ =

Z2

Z1
= tanθ1tanθ2 (8)

l = θ
c

f0
√

εre2π
(9)

In the SIR, Z1, Z2, θ1 and θ2 are the impedance and electrical length of the part of
the high impedance and the low impedance, respectively. From the above formulas, the
resonant frequency f0 of the SIR is jointly determined by Z1, Z2, θ1 and θ2. RZ is the
impedance ratio, the value of which can be adjusted to control the high harmonic frequency
of SIR. In the above equation, l is the length of the microstrip line, εre is the effective
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dielectric constant and the speed of light c = 3.0 × 108 m/s. Considering the conductor
loss of the microstrip line, the width of the GAF strip should not be too thin. Firstly,
the impedance and length of the low impedance part and RZ are determined to be 32 Ω
and 2.75, respectively, and the impedance and length of the high impedance part can be
obtained as 88 Ω and 13.06 mm, respectively, through Formulas (5)–(9). Then, due to the
discontinuity of the microstrip lines resulting from folding, it is necessary to optimize by
simulation after calculating the values of the filter.

The construction of GAF-based bandpass filter is shown in Figure 4a. The conductor
strip and ground are made of GAF, as shown in Figure 5a. The substrate is Rogers 5880 with
a thickness of 0.787 mm and εr of 2.2. Figure 4b explores the effect of various conductivities
σ on the insertion loss of the GAF-based bandpass filter. The values of conductivity are set
to 107 S/m, 106 S/m, 105 S/m, 104 S/m, 103 S/m. It can be seen that the decrease in σ will
increase the insertion loss of the bandpass filter. When the conductivity is 103 S/m, 104 S/m
and 105 S/m, the insertion loss of the bandpass filter deteriorates sharply at 3.5 GHz, which
is 27.95 dB, 11.07 dB and 4.13 dB, respectively. However, when the conductivity is 106 S/m
and 107 S/m, the corresponding insertion loss is 1.49 dB and 0.61 dB, respectively, and the
difference is only 0.88 dB.
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s3 = 0.3, s4 = 0.3. unit: mm).
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Based on the above simulation and analysis, the performance of the GAF-based and
copper-based bandpass filter with the same structure is explored and compared in Figure 5b.
The bandwidth of the GAF-based filter is 3.3–3.77 GHz with the insertion loss of 1.37 dB.
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In addition, the two transmission zeros of the GAF-based filter are located at 3.06 GHz
and 4.86 GHz, respectively. By comparison, the insertion loss of the GAF-based filter
and copper-based filter is comparable. Furthermore, the GAF-based filter has a wider
bandwidth and closer zero position than the copper-based filter. Therefore, GAF is capable
of replacing metal materials for the design of bandpass filters.

3.3. Design and Results of GAF-Based Reconfigurable Filtering Antenna

Based on the above GAF-based UWB antenna and bandpass filter, the GAF-based
reconfigurable filtering antenna is designed by using the dual-ports and the control function
of the diodes, as shown in Figure 6. The conductor strip and ground of the reconfigurable
filtering antenna are made of GAF. The substrate is also Rogers 5880 with a thickness of
0.787 mm and εr of 2.2. Two SMP1320-079LF diodes (Dio-1 and Dio-2) are selected to
obtain the function of frequency reconfiguration. The equivalent circuit of the diode under
the condition of forward bias and reverse bias is shown in Figure 6b, where RS = 0.9 Ω,
LS = 0.7 nH, CT = 0.18 pF. When the diode is forward biased, it is equivalent to the series
connection of RS and LS, which can be regarded as a short circuit. On the other hand, at
the reverse state, the diode is considered an open circuit because it is equivalent to LS and
CT in series. To verify the working mechanism of the proposed reconfigurable filtering
antenna, CST Studio Suite 2021 was employed to simulate and analyze the antenna model.
It is observed from Figure 6 that Port 1 and Port 2 of the antenna are controlled by Dio-1
and Dio-2, respectively, to achieve the switching between the UWB state and the NBF state.
When Port 1 is excited (Dio-1 is turn on and Dio-2 is turn off), the GAF-based reconfigurable
filtering antenna works in the UWB state. When Dio-2 is turned on and Dio-1 is turned off,
it can be observed that the GAF-based antenna operates in the NBF state.
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The simulated current distributions in the UWB state and the NBF state at different
frequencies are illustrated in Figure 7. The current is mainly distributed on the input
feeding line of Port 1 and monopole patch at 3.5 GHz and 5 GHz, confirming that the
antenna has good radiation characteristics over the entire frequency band of the UWB
state. When Port 2 of the GAF-based reconfigurable filtering antenna is excited, there is a
strong current distribution at the edge of the monopole patch at 3.5 GHz and no energy
is transmitted to the antenna radiator at 5 GHz, which indicates that the reconfigurable
filtering antenna has good frequency selectivity.
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After simulation, the GAF-based reconfigurable filtering antenna is fabricated and
measured. For comparison, a copper-based antenna with the same structure is also fab-
ricated and measured. Figure 8 shows the digital photo of the GAF-based antenna with
two ports and diodes. The measured bandwidth of the GAF-based antenna is 2.82–11 GHz,
as shown in Figure 9a, which can completely cover the bandwidth of the UWB. It can be
observed from Figure 9b that the measured bandwidth of the GAF antenna is 3.3–3.7 GHz
in the NBF state. In addition, the bandwidth of the copper-based antenna is 2.88–11 GHz
and 3.3–3.7 GHz in the two states, which is similar to those of the GAF-based antennae. Due
to the errors of fabrication and a slight difference between the values of actual operation
and the values given in the datasheet of diodes, it is reasonable and acceptable that the
measured results are slightly different from the simulation results.
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Furthermore, the measured realized gain of the proposed GAF-based antenna and
copper-based antenna in the two states are shown in Figure 10a. The realized gain of
the GAF-based antenna varies from 1.19–4.32 dBi in the UWB state. When the proposed
antenna operates at a 3.5 GHz NBF state, the realized gain is flat up to 2.32 dBi and the
out-of-band radiation suppression level is more than 25 dB. It is obvious that the GAF-based
antenna has similar gain in the UWB state and the NBF state compared to the copper-based
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antenna, which proves the feasibility of the GAF for the fabrication of filtering antenna.
Moreover, as shown in Figure 10b, the measured port isolation of the proposed GAF-based
antenna is more than 23 dB at 2–11 GHz, which is better than the copper-based antenna.
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The simulated and measured radiation patterns of the GAF-based reconfigurable
filtering antenna at different frequency points are displayed in Figure 11. In the UWB state,
the radiation patterns are “8”-shaped and nearly omni-directional at lower frequencies in
xoy plane and yoz plane, respectively. The deterioration at 9 GHz is due to the excitations
of high order resonance modes at high frequencies. In general, the radiation patterns in
the UWB state are like that of a conventional monopole antenna, because the frequency
reconfiguration achieved by adding diodes to the feeding line does not greatly affect the
current distributions on the monopole patch. In the NBF state, the GAF-based antenna has
similar radiation patterns to the monopole antenna at 3.5 GHz. In addition, the measured
results are in agreement with the simulated ones.
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3.4. Corrosion-Resistance

To further investigate the characteristics of the proposed GAF-based antenna, the
corrosion-resistance of the antennae is tested. The GAF-based antenna and copper-based
antenna are put in a salt spray chamber with a standard salt spray test environment, and
the corrosion states of their surfaces were detected after 168 h and 336 h. The antennae are
suspended from its test surface at a distance of 15◦ to 25◦, perpendicular to the vertical line
and parallel to the main direction of the salt spray flow. The conditions of the salt spray
test followed GB/T10125-2012, in which the concentration of the sodium chloride solution
is 5% and the test temperature is 35 degrees Celsius. In Figure 12a, it can be seen that
the surface of the GAF-based antenna is no different from than the salt spray test, while
after 168 h, verdigris appears on the copper-based antenna. After 336 h, the dark brown
patina spread all over the copper-based antenna, but the GAF-based antenna still retains its
original physical characteristics, as shown in Figure 12b, indicating that the GAF-based
antenna has better corrosion-resistance than the copper-based antenna. In addition, to
further verify the performance of the copper-based antenna and the GAF-based antenna
after the 336 h salt spray test, the reflection coefficients of the two antennae are tested in the
UWB state and the NBF state. As can be seen from Figure 12c,d, the GAF-based antenna
in both states remains in good performance, while the performance of the copper-based
antenna deteriorates greatly. The test results show that the GAF-based antenna has excellent
corrosion-resistance.

Moreover, the performances of the GAF-based reconfigurable filtering antenna and
other antennae in references are compared, as listed in Table 1. Compared with the existing
reconfigurable filtering antenna, the proposed GAF-based reconfigurable filtering antenna
not only has comparable gain and bandwidth, but also has closer radiation zeros in the
NBF state. In addition, the proposed GAF-based reconfigurable filtering antenna has
excellent characteristics of corrosion-resistance, which are not possessed by traditional
metal reconfigurable filtering antennae.
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Figure 12. Comparisons of the GAF-based antenna and copper-based antenna after salt spray test.
The corrosion states of surfaces of GAF-based antenna and copper-based antenna were detected after
(a) 168 h and (b) 336 h. Reflection coefficients in (c) UWB state and (d) 3.5 GHz NBF state after 336 h
salt spray test.

Table 1. Comparison of proposed GAF-based antenna with existing reconfigurable filtering antennae.

Ref. Materials Dimensions Working Bandwidth Average Gain (dBi) The Position of
Radiation Zero

Corrosion Resistance
Property

[6] Matal 40 mm × 38 mm
2–11 GHz (138.5%)

2.2–2.48 GHz (12.0%)
5.6–6 GHz (6.9%)

UWB: 1.01–2.28 dBi
2.4 GHz: 0.96–1.1 dBi
5.8 GHz: 1.18–1.72 dBi

– –

[7] Matal 8.6 mm × 24.6 mm 4.88–5.51 GHz (12.1%)
5.04–6.32 GHz (22.5%)

5.2 GHz: 1.21 dBi
5.5 GHz: 2.32 dBi

5.5 GHz:4.41 GHz
and 6.36 GHz –

[8] Matal 63 mm × 26 mm 3.8–6 GHz (45.0%)
NB: —

WB: 3–4.1 dBi
NBF: 2.3–3.8 dBi – –

[9] Matal 45 mm × 40 mm
2–11 GHz (138.5%)
2.4–2.6 GHz (8%)

5–6.2 GHz (21.4%)

UWB: 0.9–1.8 dBi
2.4 GHz: 1 dBi

5.8 GHz: 1.56 dBi
– –

This work GAF 35 mm × 55 mm 2.88–11 (117.0%)
3.31–3.71 (11.4%)

UWB: 1.19–4.32
3.5 GHz: 2.32

3.5 GHz: 2.83 and
4.21 Good

4. Conclusions

In conclusion, we developed a GAF-based reconfigurable filtering antenna with
durable corrosion-resistance and comparable radiation performances compared with the
commercial copper-based antenna. The GAF-based antenna can flexibly switch between
the UWB (2.8–11 GHz) and NBF (3.23–3.77 GHz) states. The realized gain of the proposed
antenna varies from 1.19–4.32 dBi in the UWB state and is flap up to 2.3 dBi in the NBF state.
Additionally, the port isolation of the GAF-based reconfigurable filtering antenna reaches
23 dB. Benefiting from the chemical stability of the GAF, the GAF-based antenna main-
tained reliable impedance and radiation performance after the 336 h salt spray corrosion
test. On the contrary, the copper-based antenna performance exhibited rapid degradation
under salt spray corrosion. This research is of great significance to improve the reliability,
electrical performance, and life cycle of the antennae in harsh environments.
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