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Background: A bimetal (Fe/Ni) doped cobalt-nitrogen-carbon matrix (Fe/Ni-CoNC) with hierarchical architec-
ture originating from zeolitic imidazolate framework (ZIF-67) is purposely designed.
Methods: The metals within the Co-N-C matrix are well distributed. Besides, Fe/Ni-CoNC was supported on
reduced graphene oxide (RGO). We demonstrate that the three-element combination can synergistically con-
tribute to different advantages for microwave absorption. Therefore, the combination of Fe and Ni synergized
the absorber to obtain a good impedance match for the best microwave absorption.
Significant Findings: The synthesized Fe/Ni-CoNC/RGO with optimized element components exhibited an
excellent wave absorption of -51.6 dB at 7.2 GHz obtained with a thin thickness of 2.5 mm. When combining
Fe/Ni-CoNC/RGO with a thermoset resin, namely polydicyclopentadiene (PDCPD), the final product reached a
maximum absorption of -24.5 dB with a thickness of 1.5 mm. This compounding confirmed that interfacial
polarization, defect polarization, and natural resonance are synchronously enhanced for improved absorp-
tion performance.
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1. Introduction

The rapid development of electromagnetic devices such as micro-
wave ovens, smartphones, laptops, televisions, etc., profoundly
changes the human lifestyle. They evoke transformation of traditional
heat mode and instant spreading of information. However, excessive
electromagnetic exposure brings severe electromagnetic interference
(EMI) and electromagnetic radiation, firmly harming the other work-
ing electromagnetic devices and human health, particularly adverse
to pregnant women [1]. Hence, the development of microwave
absorbents with high absorption properties has become a key solu-
tion to the problem.

Generally, the performance of microwave absorbents is deter-
mined by the electrical and magnetic losses, which consume the
energy of the electromagnetic wave [2]. Carbon materials are one
kind of the most promising absorbents because of their high electrical
losses and low density [3]. Furthermore, the graphene research
[4�6], typically such as reduced graphene oxide (RGO) [7,8], has
demonstrated that dipoles polarization loss is generated by the p
electrons, which are vertically distributed on the RGO surface, under
the action of an electromagnetic field. RGO can mainly introduce
defect polarization relaxation and electron dipole relaxation of resi-
dues, which are conducive to electromagnetic waves’ penetration
and absorption [9�11]. Nonetheless, the pure carbon materials may
lead to high permittivity and mismatching impedance, which are dif-
ficult for the materials to have ideal absorptions in the 2�18 GHz fre-
quency range. Therefore, there is an urgent need for lowering the
permittivity and increasing the permeability of carbon materials
[12]. According to the impedance matching rule, introducing mag-
netic particles into RGO has attracted much attention as a solution.
Lately, compositing transition metals with carbon materials exhibited
unusual activity and stability in microwave absorption fields. The car-
bon layers can acquire electrons from metal particles and hinder
transition metal particles from aggregation. In addition,
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ferromagnetic metals [13] such as Co, Fe, and Ni, together with their
alloys [14�16], can increase magnetic permeability and magnetic
tangent loss. Their metal oxides have the positive effect of reducing
permittivity to obtain better impedance matching. Especially,
NiFe2O4 [17] has low coercivity, large saturation magnetization, and
broadens the absorption band width, which is meaningful for
improving microwave absorption. Those magnetic compounds dis-
play excellent wave absorption performances, thus significantly
enhancing the material's wave absorbing ability.

Metal-organic frameworks (MOFs) [18] possess superior proper-
ties such as high surface area, excellent porosity, low density, and
good permittivity [19], which makes MOFs become a good candidate
for high-quality wave absorbers [20�22]. Zeolitic imidazolate frame-
work-67 (ZIF-67) [23, 24], a sub-family of MOF materials, is con-
structed from cobalt ions connected with 2-methyl imidazole ligands
extended in a 3D structure generating a rhombic dodecahedron crys-
tal shape. Interestingly, the pyrolysis of ZIF-67 as a precursor produ-
ces cobalt nanoparticles in a nitrogen-carbon matrix (CoNC) which
delivers an excellent microwave absorption behavior. Also, the MOF-
derived carbonaceous Co/C nanocomposite showed a maximum
absorption of �35.3 dB, with an absorber thickness of 4 mm [25].

In this work, we further demonstrate that by bimetallic doping of
ZIF-67 using Fe and Ni, followed by mixing with reduced graphene
oxide (RGO) and pyrolysis, the derived Fe/Ni-CoNC/RGO composite
exhibits a significant enhancement of the microwave absorption
capacity. The results indicate that compositing Fe/Ni-CoNC/RGO with
dicyclopentadiene (DCPD), the composite achieved the highest
absorption of �24.5 dB with a thin thickness.

2. Experimental section

2.1. Materials and reagents

Cobalt nitrate hexahydrate (Co(NO3)2¢6H2O; � 99.0%), 2-methyli-
midazole (2-MIM; 98.0%), Nickel(II) acetate tetrahydrate (Ni
(CH3COO)2¢4H2O; �99.0%), and GENAPOL(R) X-080 (wetting agent)
were purchased from Sigma-Aldrich Co., Ltd. Paraffin with ceresin
(melting point 62�64 °C), Trichloro(phenyl)silane (C6H5Cl3Si; 98%),
Iron(II) acetate (Fe(CH3COO)2; > 90.0%) were provided by Aladdin
Co., Ltd. Methanol (CH3OH; AR; � 99.5%), Dichloromethane (CH2Cl2;
AR; � 99.5%) were obtained from Sinopharm Co., Ltd. Graphene
Oxide (Diameter: 500 nm-5 mm; Thickness: 0.8�1.2 nm; single layer
ratio » 99%; purity > 99 wt%) was purchased from Shanghai Naford
Biological Technology Co., Ltd. All the chemicals were directly used
without further purification. Guang Ming Chuang Xin Co kindly pro-
vided ruthenium catalyst and DCPD (dicyclopentadiene).

2.2. Material preparation

Synthesis of ZIF-67
ZIF-67 was typically synthesized from a mixture of solution A con-

taining Co(NO3)2¢6H2O (0.291 g, 0.1 mmol) dissolved in methanol
(13.5 mL) and solution B containing 2-methylimidazole (0.66 g,
0.8 mmol) in methanol (13.5 mL). The mixture solution was vigor-
ously stirred at ambient temperature for 24 h before separating the
solid product via centrifugal at 9000 rpm for 10 min. The purple solid
was washed with methanol several times (> 3 times) until the sol-
vent was colorless. The collected purple solid was dried at 50 °C
under vacuum overnight before storing the product for further use.

Synthesis of M@ZIF-67
M@ZIF-67 (M = Fe and/or Ni) was synthesized using a post-syn-

thetic method via immersion of ZIF-67 in the metal precursor solu-
tion. ZIF-67 (200 mg) was transferred in precursor solution of Fe
(CH3COO)2 (50 mg) or Ni(CH3COO)2¢4H2O (100 mg) dissolved in 5 mL
of methanol and denoted as Fe@ZIF-67 or Ni@ZIF-67, respectively.
The bimetal Fe/Ni@ZIF-67 was prepared from ZIF-67 (200 mg) mixed
with a solution of Fe(CH3COO)2 (50 mg) and Ni(CH3COO)2¢4H2O
(100 mg) dissolved in methanol 10 mL. All suspensions were vigor-
ously stirred at ambient conditions for 6 h before adding dispersed
graphene oxide (GO, 78 mg in 10 mL methanol). Using sonication for
1 h, 24 h later, Fe@ZIF-67@GO or Ni@ZIF-67@GO or Fe/Ni@ZIF-
67@GO was obtained, respectively. Additionally, graphene oxide (GO,
78 mg in 5 mL methanol) was directly mixed with a suspension of
ZIF-67 (200 mg in 5 mL of methanol) as a reference sample (ZIF-
67@GO). The suspensions were stirred at ambient temperature for
24 h. The solids were separated via centrifuge (9500 rpm for 10 min)
and washed with cold methanol for one time before drying the sam-
ples at 50 °C under vacuum overnight. Finally, the dried solid samples
were pyrolyzed at 600 °C using a programmable heating rate of 5 °C/
min for 6 h under argon flow (20 cc/min) before cooling down to
room temperature (samples denoted after pyrolysis: M-CoNC/RGO
for ZIF-67 doped with Fe/Ni or both composited with GO).

Preparation of microwave samples (paraffin)

The microwave absorption experiment sample was provided in a
ring shape with an outer diameter (OD) of 7.00 mm and an inner
diameter (ID) of 3.04 mm. Well-mixed samples (20 mg of materials
and 80 mg paraffin (binder)) were pressed into a toroidal-shaped
customized mold to achieve standard size.

Preparation of composite materials in PDCPD

Fe/Ni-CoNC/RGO/PDCPD samples were synthesized using 100 mg
Fe/Ni-CoNC/RGO mixing with 1.9 g of DCPD monomer (a drop of wet-
ting agent GENAPOL(R) X-080 was added). The suspensions were
sonicated at least 1 h before adding 2 mL of phenyl trichlorosilane
(activator agent) and 1 mg of catalyst ((S-IMes)(2- [(2-methyl-phe-
nylimino)methyl]-phenoxy)(3�2-methylphenyl-5-methyl-inden-1-
ylidene)Ru(II)Cl (GMCX, China)) dissolved in dichloromethane. Then,
those mixtures were poured into molds, which were pre-heated at
120 °C for 30 min. A carving machine (Wuhan Jiangpai Technology
co., LTD, SJ-1325) was applied to cut out samples according to the
standard size/shape as mentioned before.

2.3. Material characterizations

Powder X-ray diffraction (PXRD) patterns were analyzed using a
Bruker D8 Advance X-ray diffractometer equipped with Cu-Ka sealed
tube (λ = 1.542 A

�
), operated at 40 kV and 40 mA, at a scan velocity of

0.2 s/step, scanning step length of 0.02 ° / step from 5 to 80° Raman
analyses were performed using a RENISHAW InVia Raman micro-
scope with a Ne-He laser excitation operated at 633 nm wavelength.
Fourier Transform infrared spectroscopy (FTIR) was performed using
a Vertex 80v (Bruker, Germany). X-ray photoelectron spectroscopy
(XPS) was performed on an ESCALAB 250Xi spectrometer.

Scanning electron microscopy (SEM) images and Energy-disper-
sive X-ray spectroscopy (EDS) were carried out on a MIRA3 TESCAN
scan electron microscope operated at 20 kV. Transmission electron
microscopy (TEM) image using a Cu grid was obtained by an FEI Tec-
nai G2F30 microscope and an accelerating voltage of 300 kV. The ele-
ment content was confirmed by Prodigy 7 Inductively Coupled
Plasma-Optical Emission Spectroscope (ICP-OES), wavelength range
of 165»1100 nm, optical resolution 0.007 nm (at 200 nm), and analy-
sis precision less than 2%. Magnetic properties of samples were
acquired by a vibrating sample magnetometer (VSM, Lake Shore
7404) with an external magnetic field of �20,000 to 20,000 Oe at
ambient temperature. The electromagnetic parameters were ana-
lyzed using a VNA, Agilent N5247A vector network analyzer in the
frequency range of 2�18 GHz after a full two-port calibration
(SHORT�OPEN�LOAD�THRU).
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3. Results and discussion

3.1. Material characterization

High crystalline porous ZIF-67 was synthesized under ambient
conditions (room temperature) since it is a fast and cost-effective
method to produce this material, as shown in Scheme 1. The ligand
(2-MIM) deprotonates and coordinates to metal ions (Co), forming a
crystalline ZIF-67. The characterization of the obtained ZIF-67
revealed similar characteristic properties as previously reported. [26]
For example, the powder X-ray diffraction (PXRD) pattern confirmed
a high crystalline nature, perfectly matching the simulated structure,
as shown in Fig. S2a. Scanning electron microscope (SEM) analyses
revealed rhombic dodecahedron crystal morphologies and particle
sizes ranging from 200 to 500 nm (Fig. S1b).

The ZIF-67 doped with Fe, Ni, or Fe/Ni ions, were synthesized, and
after the doping, the crystal morphology was analyzed by SEM, as
shown in Fig 1a. Due to the stirring of the suspension, leading to the
partial break-down of ZIF particles, a particle size ranging from 150
to 500 nm was obtained. Next, the composite materials were synthe-
sized based on doped ZIF (Fe@ZIF-67, Ni@ZIF-67, and Fe/Ni@ZIF-67)
and graphene oxide (GO). The morphology of GO was characterized
via SEM. A folded microstructure with a thin layer sheet-like
Fig. 1. SEM image of Fe/Ni@ZIF-67 (a), Fe/Ni@ZIF-67@GO (b), Fe/Ni-CoNC/RGO (c), element m
of metal nanoparticles (f, g) in sample Fe/Ni-CoNC/RGO.
structure, with particle sizes ranging from nanometer to micrometer,
was observed (Fig. S1a). The Fe/Ni@ZIF-67@GO morphology was also
identified by SEM, where Fe/Ni@ZIF-67 was anchored on the GO sur-
face, as shown in Fig. 1b. Subsequently, the composite materials were
pyrolyzed in a tubular furnace under Ar atmosphere at 600 °C for 6 h.
A black-colored product was obtained after the pyrolysis process
with a weight loss of � 60%. Shrunken rhombic dodecahedral mor-
phologies of the ZIF-67 shape were observed after pyrolysis, as
shown in Fig. 1c. Fig. 1d demonstrates the metal element dispersion
of Co, Fe, and Ni of the pyrolyzed material (Fe/Ni-CoNC/RGO), reveal-
ing that Co, Fe, and Ni elements are regularly dispersed. The metal
content of Fe/Ni-CoNC/RGO was analyzed via SEM-EDS Mapping and
Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-
OES). The obtained results (Fig. 2g) show that the total contents of
metals (bulk) are all higher than on the surface, indicating that most
metals are present inside the pyrolyzed materials. The nanostructure
of the synthesized material was investigated by high-resolution
transmission electron microscopy (HR-TEM). The metal nanoparticles
are implanted in the carbon matrix, as shown in Fig. 1e. Also, HR-TEM
observed variance of lattice fringes (Fig. 1f, g). For example, the inter-
planar distance of 2.4 A

�
might be attributed to the [311] plane of

Co3O4, while a distance of 2 A
�
might be assigned to the [111] plane

of Co, the [110] plane of Fe, the [031] plane of Fe3C or the [111]
apping of Fe/Ni-CoNC/RGO (SEM-EDS) (d), TEM image of Fe/Ni-CoNC/RGO (e), HR-TEM



Fig. 2. The PXRD pattern (a) and Raman spectra (b) of CoNC/RGO, Fe-CoNC/RGO, Ni-CoNC/RGO, and Fe/Ni-CoNC/RGO, FT-IR spectra (c) of GO comparable to Fe/Ni-CoNC/RGO, Co 2p
XPS spectra (d), Fe 2p XPS spectra (e), Ni 2p XPS spectra (f) of Fe/Ni-CoNC/RGO, SEM-EDS Mapping and ICP metal content results (g) of sample Fe/Ni-CoNC/RGO, VSM patterns (h)
and partial enlarged VSM patterns (i) of CoNC/RGO, Fe-CoNC/RGO, Ni-CoNC/RGO, and Fe/Ni-CoNC/RGO.
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plane of Ni [27]. Furthermore, these results suggest the reduction of
GO to RGO and the decomposition of the ZIF-67 framework structure
occur during the pyrolysis process, and metal nanoparticles of Co, Fe,
and Ni are generated and well-dispersed in the carbon matrix struc-
ture.

Once the carbonaceous composited materials are prepared, the
carbonaceous composited materials are mixed in the required ratio
with paraffin or DCPD for wave absorption measurements (ratio sam-
ple/paraffin=20%; ratio sample/DCPD=5%; all ratios are the maximum
filling amount of each absorber in the matrix). Subsequently, the mix-
tures are transferred into an appropriate mold to produce the final
samples, Scheme 1.

The crystalline structure of the synthesized materials was verified
by PXRD analysis. Firstly, the purchased GO was characterized and
revealed a peak at 11.2° in the XRD spectrum corresponding to [001]
carbon plane (Fig. S2b) with an interlayer space of 7.9 A

�
(Bragg equa-

tion 2dsinu = nλ; λ=1.542 A
�
) [28]. A decrease in size, crystallinity, and

disorder of the graphene structure after a high-temperature treat-
ment (pyrolysis) causes the crystal pattern change from GO to RGO
[29]. In Fig.2a, the crystal pattern of pyrolyzed ZIF-67@GO reveals
peaks at 2u=44.2°, 51.5°, and 75.8° which originate from crystal
planes of metallic b-Co (PDF #15�0806) at [111], [200], and [220],
respectively. Additionally, the obvious diffraction peak at 36.8° is
attributed to the crystal plane [311] of Co3O4 (PDF #43�1003). The
Fe-doped materials (Fe-CoNC/RGO and Fe/Ni-CoNC/RGO) exhibited
additional peaks at 2u=44.7° and 65.0°, corresponding to Fe crystal
planes [110] and [200] (PDF #06�0696). Moreover, an additional
secondary phase related to the Fe3C crystal plane [031] at 2u=45.0°
(PDF #65�2413) was also observed in the XRD pattern of the doped
Fe samples. Samples containing Ni disclose Ni crystal (PDF
#65�2865) peaks, situated close to the Co crystal peaks, at 2u=44.5°,
51.8°, and 76.4° assigned to the planes [111], [200], and [220]
respectively. Besides those peaks of the Ni crystal phase, the appear-
ance of the NiFe2O4 (PDF #54�0964) crystal plane [311] at 2u=35.7°
in Fe/Ni-CoNC/RGO was also observed in the diffraction pattern.
These data are consistent with TEM results that metal Fe, Co, or Ni,
Fe3C, and Co3O4 are present.

The presence of the metallic Co phase in the Fe/Ni-CoNC/RGO
sample was also confirmed via Raman spectroscopy. The band set at
190 cm�1, 471 cm�1, and 678 cm�1 are assigned to the F2g(3) mode,
Eg symmetry mode, and A1g symmetry mode of the crystalline metal-
lic Co [30], respectively (Fig. 2b). The Raman analysis also provided
more detailed structural information about the chemical speciation
of carbon. The spectra of all materials revealed two cognizable peaks
at 1334 and 1600 cm�1 assigned to D- and G-bands of the carbon spe-
cies, respectively [31]. The G band is a characteristic feature of gra-
phitic layers, whereas the D band corresponds to disordered carbon
or defective graphitic structures. Hence, the ratio of the D- and G-
band (ID/IG) integrated intensities from the Raman spectrum was
used to assess the graphitization degree in the carbon materials.
Firstly, the ID/IG ratio of GO and RGO are 0.94 and 0.98, respectively
(Fig. S2c). The increasing value of ID/IG indicates that more sp2 hybrid-
ization or defect carbon structures are generated after the pyrolysis
process [32]. The pyrolyzed composite materials exhibit a growing ID/
IG ratio comparable to non-composite (RGO). Higher sp2 hybridiza-
tion might result from carbon generated from the carbonized imidaz-
ole structures of ZIF-67. The ID/IG ratio was slightly different for each
composite material; nevertheless, the highest value was observed for
Fe/Ni-CoNC/RGO (Fig. 2b). Moderate graphitization degree or proper
content of defects for carbon-based materials has been confirmed to
be helpful for the attenuation of incident electromagnetic (EM)
waves. This could improve the matched characteristic impedance



Table 1
Magnetic properties of the prepared samples.

Sample Ms (emu/g) Mr (emu/g) Hc (Oe)

CoNC/RGO 31.09 6.31 288.00
Fe-CoNC/RGO 56.70 9.50 314.12
Ni-CoNC/RGO 40.57 4.72 226.32
Fe/Ni-CoNC/RGO 40.20 5.33 269.86
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and prompt energy transition from contiguous states to Fermi level
and introduce defect polarization relaxation and dipole relaxation.

Further information regarding the functional groups or chemical
environment of the synthesized materials was obtained by Fourier
Transform infrared spectroscopy (FTIR). In Fig. 2c, the vibration band
at 1730 cm�1 is assigned to the nC = O stretch vibration of carbonyl
groups in GO [33]. This vibration band drastically decreased for the
Fe/Ni-CoNC/RGO but is still present. However, a new band at 575
cm�1 was observed in Fe/Ni-CoNC/RGO, representing the M-O
(M=Co, Fe or Ni) stretch vibration. [34, 35] The combined results of
TEM, XRD, and FTIR confirm the existence of metal oxides.

X-ray photoelectron spectroscopy (XPS) was applied for the sur-
face analysis of Fe/Ni-CoNC/RGO to gain more insight regarding the
chemical state and chemical bonding of the species present in the
sample. All spectra were fitted after subtraction of the Shirley back-
ground. The C 1 s spectrum of precursor GO gave five peaks after
deconvolution corresponding to C��C at 284.8 eV, C��OH at 285.5 eV,
C��O at 286.2 eV, C = O at 287.6 eV, and O = C��O at 288.9 eV (Fig.
S2d). The survey spectrum of Fe/Ni-CoNC/RGO (Fig. S2e) indicated
the presence of the chemical species C, N, O, Co, Fe, and Ni. The
deconvolution of the Co 2p spectrum revealed two doublets, one
doublet for CoIII2p3/2�2p1/2 at 780 and 795.5 eV, the second doublet
for CoII 2p3/2�2p1/2 at 781.5 and 797 eV [36]. Satellite peaks (Sat) for
Co were also observed at 786 and 803 eV, as shown in Fig. 2d. [37]
The Fe 2p spectrum [38] contains FeII, FeIII, and Fe0, with a doublet
contribution of FeII (710, 723 eV) and of FeIII (712, 725 eV). The values
at 715 and 719 eV are assigned to satellite peaks (Sat) for FeII and FeIII.
A small contribution of Fe0 can be found at 707 eV (Fig. 2e) [39].
Fig. 2f displays the binding energies at 852 eV and at 855/872 eV,
which can be assigned to metallic nickel [40] Ni0 and NiII,
Fig. 3. Frequency dependence of the electromagnetic parameters for CoNC/RGO, Fe-CoNC/R
complex permittivity, (b) the real part (m0) and imaginary part (m00) of complex permeability,
respectively. For the Ni0, the Ni 2p1/2 is masked and consequently not
visible. Most of the nickel present in the material is NiII and a small
amount exists as metallic Ni. Furthermore, the C 1 s, N 1 s and O 1 s
spectra of the synthesized Fe/Ni-CoNC/RGO exhibit peaks of C��C
(284.8 eV), C = N (285.9 eV), C��O (286.9 eV), C = O (288.9 eV), C = C
(291.9 eV), pyridinic-N (398.9 eV), Co-N (399.8 eV), pyrrolic-N
(401.1 eV), graphitic-N (402.6 eV), oxidized-N (404.6 eV), and O2-

(530.1 eV) as shown in Fig. S2f-h. [41] Particularly, the N-species
derived from pyrolyzed 2-MIM are reported to be beneficial to consti-
tute open reticular carbon walls/matrix and tune the electrical prop-
erties [42]. The latter is advantageous to obtain stronger and broader
bandwidth wave absorption of electromagnetic radiation. Moreover,
different N-structures also affect wave absorption properties differ-
ently. Pyrrolic-/pyridinic-N is primarily required for the dipolar relax-
ation loss, while graphitic-N is favorable for conduction loss. The XPS
results demonstrate the presence of the different oxidation states for
the elements, which is consistent with the species detected by XRD.

The hysteresis loops [43] of the magnetic materials CoNC/RGO, Fe-
CoNC/RGO, Ni-CoNC/RGO, and Fe/Ni-CoNC/RGO composites at room
temperature are depicted in Fig. 2h, i. The static magnetic properties
of these composite samples are given in Table 1. The addition of Ni
GO, Ni-CoNC/RGO, and Fe/Ni-CoNC/RGO. (a) the real part (e0) and imaginary part (e00) of
(c) the dielectric tangent loss and the magnetic tangent loss, (d) Cole-Cole plots.
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and Fe elevated the saturation magnetization (Ms) property. Espe-
cially the addition of high saturation magnetism iron metal increased
the values of Ms, remanent magnetization (Mr), and coercive field
(Hc) for Fe-CoNC/RGO composite resulting in the highest observed
values. This high value of saturation magnetization is usually condu-
cive to high-frequency resonance [44].

3.2. Microwave absorption

Electromagnetic absorption properties greatly rely on the com-
plex permittivity (er= e0�je00) and complex permeability
(mr = m0�jm00). The real part (e0) of the complex permittivity is a vari-
able of the polarization intensity under the action of an external
electric field, representing its ability to store energy. In contrast, the
imaginary part (e00) of the complex permittivity is the energy con-
sumption caused by the rearrangement of the electric couple
moment under the action of an external electric field. The real part
(m0) of the complex permeability is energy storage produced under
the action of an external magnetic field. In contrast, the complex
permeability's imaginary part (m00) is the energy loss of an external
magnetic field [45]. Furthermore, electron polarization, internal
dipole polarization [46], ionic polarization, interfacial polarization
[47], interface and multiple scattering [48], exchange resonance,
natural resonance [49], magnetic hysteresis, eddy current loss,
domain wall resonance loss, etc., can influence permittivity and per-
meability.

Fig. 3 shows that the electromagnetic parameters of the four
microwave absorbents depend on the frequency. e0 values (Fig. 3a)
generally show a declining trend with rising of the frequency proba-
bly caused by the decline in space charge polarization with frequency
raising [50], while e00 values (Fig. 3a) fluctuate at a particular range.
Compared with CoNC/RGO, the e0, e00, and calculated dielectric tan-
gent loss [51] (tan dE = e00/e0, Fig. 3c) values of the samples containing
Ni or Fe are lower. This results from the existence of extra magnetic
metal species, which are available to reduce dielectric performance
and obtain well electromagnetic impedance matching. Interfacial
polarization was enhanced by different phases and increased inter-
face area. Obviously, peaks can be seen in permittivity curves; they
may come from dipole polarization or interfacial polarization [52]
among RGO and metal components. The conductivity loss was gener-
ated by a conductive network afforded by a hierarchical carbon Co-N
matrix and free electrons emanating frommetal-containing nanopar-
ticles. The existence of conductivity loss can also be confirmed by the
line tail in Cole-Cole plots (Fig. 3d) according to Eq. S1 [53]. At the
same time, the distinguishable semicircles in the plots confirmed the
Debye relaxation processes. Furthermore, the distorted semicircles
imply that other loss mechanisms also exist in these composite sys-
tems.

The m0 values (Fig. 3b) of the four samples fluctuate within the
selected frequency range. Meanwhile, due to the highest magnetic
properties, the Fe-CoNC/RGO sample shows the highest m00 value
(Fig. 3b) and magnetic tangent loss (tan dM = m00/ m0, Fig. 3c) at a spe-
cific frequency range. Furthermore, the m00 graph shows the mini-
mum value is �0.22; these negative m00 suggests that the composites
radiated out a magnetic energy. [54] The resonance peaks of perme-
ability values in the high-frequency part are mainly owing to
exchange resonance [55, 56].

Based on the above electromagnetic parameter values and using
Eq. S2 and Eq. S3, the reflection loss maps were constructed [57, 58]
(Fig. 4). Fig. 4a, b exhibits the calculated absorbing result for CoNC/
RGO. An effective absorption in the frequency band from 3.4 to
4.2 GHz shows a maximum absorption of �16.8 dB with a thickness
of 4 mm. The widest effective absorption [59] in the frequency band
from 10.7 to 13.2 GHz illustrates a maximum absorption of �15.6 dB
with a thickness of 1.5 mm. For this sample, with different thick-
nesses, the gaps of maximum absorption are small. Fig. 4c, d displays
the calculated absorbing result for Fe-CoNC/RGO; the sample shows
strong absorption in the low-frequency range and large thickness
region, the strongest absorption with maximum absorption of
�33.9 dB at 5.0 mm is realized. In the high-frequency range and thin
thickness region, a broad absorption from 11.6 to 15.2 GHz with max-
imum absorption of �24.7 dB at a thin thickness of 1.5 mm is
observed. Fig. 4f, g displays the calculated absorbing result for Ni-
CoNC/RGO; this sample has strong attenuation in the high-frequency
range and thin thickness region. As the frequency increases and the
thickness decreases, the absorbing properties show a broadband
absorption, from 11.3 to 15.0 GHz with a maximal absorption of
�38.7 dB at a thin thickness of 1.5 mm. Fig. 4h, i displays the calcu-
lated absorption for Fe/Ni-CoNC/RGO. Combining the advantages of
Fe-CoNC/RGO and Ni-CoNC/RGO samples, an excellent absorption
intensity and width is obtained from 6.5 to 8.1 GHz with maximum
absorption of �51.6 dB with a thickness of 2.5 mm. The widest effec-
tive absorption from 11.5 to 14.5 GHz of �42.4 dB with the thickness
of 1.5 mm, can be perceived. In Fig.4e, it is shown that sample Fe/Ni-
CoNC/RGO possess the maximum absorption with appropriate thick-
ness and effective bandwidth. Impedance matching Zin/Z0 [60] (Fig.
S3) stands for balancing the complex permittivity and permeability,
the tri-metal sample Fe/Ni-CoNC/RGO achieved the best impedance
matching, its real part of Zin/Z0 is the closest to 1, and the imaginary
part is the nearest to 0. This may benefit from the formation of
NiFe2O4 nanoparticles [61]. Attenuation constant a [62] (Eq. S4) rep-
resents the decay of electromagnetic waves inside the samples; in
general, all the attenuation constants (Fig. S4a) are all increased with
raised frequency. If C0 values [63] (Eq. S5) remain constant, this
implies that the eddy current loss plays an essential role in the mag-
netic loss. However, C0 values (Fig. S4b) vary with the frequency,
indicating that resonances functioned in the magnetic loss [64]. As a
result, the bimetal sample exhibits the best microwave absorption
properties among these four samples. A recent literature survey of
the microwave absorption performances of various absorbents in
paraffin is given in table S1.

Having this excellent microwave absorbing material in hand,
which is still a powder, there is a need to composite this material
straightforwardly to be applied in real applications. We selected dicy-
clopentadiene (DCPD) as a monomer, of which the mechanical and
thermal properties are provided in Table S2. Dicyclopentadiene
(DCPD) can be used as a monomer and produces polymers in high
yield. Polymerization of the DCPD by a ruthenium catalyst through
ring-opening metathesis polymerization (ROMP) generates a thermo-
set polymer called polydicyclopentadiene (PDCPD). This polymer can
be tailored to satisfy divergent material requirements, leading to a
wide range of applications in automobiles, aerospace, ballistics, sport
and recreation, microelectronics, etc. DCPD is a monomer with low
viscosity, making it easy to obtain a homogeneous mixture of the
microwave absorbing material with DCPD.

Furthermore, the monomer's viscosity increases with an increas-
ing amount of additive (graphene or RGO); hence, only a small
amount can be well dispersed in the DCPD monomer. Once a homo-
geneous mixture of the microwave absorbing material with DCPD
was obtained, the ruthenium catalyst was added. The mixture was
injected into the mold, and polymerization occurred, so the micro-
wave absorbent material was incorporated in the poly-DCPD matrix
(PDCPD). This procedure is similar to reaction injection molding
(RIM), a well-known industrial process used to polymerize DCPD
[65�67].

After the polymerization process, the final sample was investi-
gated for its microwave absorbing properties and for the effect of
compounding in a PDCPD matrix. Fig. 5 displays the electromagnetic
parameters of the polymer samples as a function of the frequency.
Fig. 5a depicts the real part and the imaginary part of the permittivity.
Distinctly declined e0 values together with increased e00 values with
frequency, resulted in uptrend dielectric tangent loss (Fig. 5d). m0



Fig. 4. Reflection loss for four different samples: CoNC/RGO (a) and (b); Fe-CoNC/RGO (c) and (d); (e) the relationship among thickness, RL and effective bandwidth of all the sam-
ples, the electromagnetic wave absorption performance; Ni-CoNC/RGO (f) and (g); Fe/Ni-CoNC/RGO (h) and (i); (j) Fe/Ni-CoNC/RGO absorber compared with other Co, Fe, Ni con-
taining materials.

Q. Chen et al. / Journal of the Taiwan Institute of Chemical Engineers 134 (2022) 104350 7
values (Fig. 5b) show a simple harmonic shape, whilem00 reveals reso-
nance peaks at low frequency [68], this phenomenon may originate
from natural resonance [69]. Combining tan dE and tan dM results
(Fig. 5c) reveal that the microwave absorption property of this poly-
mer sample relies on magnetic tangent loss in the low frequency and
dielectric tangent loss in the high frequency range.

The reflection losses for the mentioned polymer samples are
depicted in Fig. 5c; the maximum absorption with a thin thickness of
1.5 mm is �24.5 dB. The widest effective absorption frequency bands
vary from 10.3 GHz to 14.1 GHz with maximum absorption of
�21.9 dB with a thickness of 2 mm. The absorbing curves changed
with the frequency and absorber's thickness. The strongest absorp-
tion peaks remarkably shift to the low frequency direction with
increasing thickness, in agreement with the quarter-wavelength can-
celation model (Fig. 5f). The relationship between the frequency shift
and thickness for the maximum microwave absorption was
expressed in Eq. S6. Specifically, when the phase difference between
the incident and reflected waves in the microwave absorber equals p
[70], then the waves will cancel each other at the air-absorber inter-
face. Undoubtedly, the experimental values matched well with the
simulated quarter-wave curve. This excellent microwave absorption
property is not only due to the notable good impedance matching
(Fig. S5a,b) but also due to the high attenuation constant (Fig. 5e)
[71]. The C0 values (Fig. 5e) still all vary with frequency, indicating
that not only eddy current loss make efforts for the absorption prop-
erty. Especially the peaks in the low-frequency part again prove the
existence of natural resonance. A literature survey of the microwave
absorption performances of various absorbents in different polymer
matrixes is given in Fig. 4j, and detailed information is supported in
Table.S1.

Based on the above investigation, Fe/Ni doped cobalt-nitrogen-
carbon matrix on RGO can meaningfully enhance microwave absorp-
tion, broaden the bandwidth and reduce the absorption thickness.
Due to the best impedance balance, the incident wave can enter into
the absorber with seldom a portion of reflection. After the entrance,
various attenuation models (Scheme. 2) help to convert and consume
the microwave energy. Three types of polarization may exist in this
system:

1. Defect carbon structures in RGO and the defects in the crystal
structure may cause defect polarization.



Fig. 5. Frequency dependence of electromagnetic parameters Fe/Ni-CoNC/RGO/PDCPD. Complex permittivity (a), complex permeability (b), reflection loss (c), the dielectric tangent
loss and the magnetic tangent loss (d), attenuation constant and C0 value (e), dependence of the matching thickness on frequency under λ/4 (f).

Scheme 1. Schematic illustration of the process for the synthesis Fe/Ni-CoNC/RGO/PDCPD.
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2. When inherent dipoles in asymmetric molecules respond to the
applied electric field, dipolar polarization happens.

3. Due to the charge accumulation, interfacial polarization hap-
pened at the interface of the heterogeneous media (RGO, metallic
nanoparticle, cobalt-nitrogen-carbon, and matrix).

The energy consumed by the migration and hopping of electrons
in the conductive network is the conductivity loss.

The magnetic loss generally derives from natural resonance,
exchange resonance, and eddy current loss. Eddy current loss is gen-
erated when the conductors move in a non-uniform magnetic field or
appear in a magnetic field varied with time. Only the external alter-
nating current (AC) magnetic field can cause natural resonance in
this system due to the anisotropic magnetic field inside. In the end, if
the incident wave runs into its counterpart of the opposite phase
from the reflection, optimized absorption performance can be cre-
ated.

4. Conclusion

An effective and efficient microwave absorbent was developed by
introducing the desired amount of magnetic (Fe/Ni) doping material
in a cobalt-nitrogen-carbon matrix on RGO. Magnetic Fe and Ni nano-
particles, especially NiFe2O4, optimize the impedance matching of Fe/
Ni-CoNC/RGO composites, generating excellent reflection loss perfor-
mance over the whole selected frequency range. Owing to the excel-
lent dielectric and magnetic properties, together with the optimal
impedance matching, �51.6 dB of 7.2 GHz can be obtained at a thin
thickness of 2.5 mm. The results demonstrate that MOF materials,



Scheme 2. A possible schematic illustration of microwave attenuation models in the Fe/Ni-CoNC/RGO/PDCPD.
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together with metal oxides nanoparticles or metal nanoparticles
anchored on RGO, can generate good absorbing properties. Based on
such an excellent microwave absorbent, the resulting Fe/Ni-CoNC/
RGO/PDCPD composite reached �24.5 dB at 16.5 GHz with a thick-
ness of 1.5 mm, achieving outstanding impedance matching, interfa-
cial polarization, defect polarization, and natural resonance,
increasing its attenuation ability. The present work shines the light
on the multimetal and multicomponent design of microwave absorp-
tion materials.
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