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ABSTRACT: Rationally designing highly active electrocatalysts for the oxygen evolution 

reaction (OER) is exceedingly essential for ecologically sustainable development, but is still a 

principal research challenge due to the sluggish four-electron kinetics. Due to their structural 

diversity and ultra-high surface area, metal-organic framework (MOF) ultrathin nanosheets have 

expected to provide not only more accessible active sites, but also faster mass transfer and 

diffusion and have been realized as OER electrocatalysts. Therefore, we develop the controllable 

synthesis of Co-based MOF ultrathin nanosheets (NMOF-Co) incorporated with different-

valence Fe ions, which are used as a high-performance electrocatalyst via a post-synthetic 
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modification method. The binary metal electrocatalyst demonstrated more effective kinetics than 

the single metal electrocatalysts. By virtue, the obtained electrocatalyst with a uniform thickness 

of ~ 4 nm (defined as (Fe(II)1Fe(III)1)0.6/NMOF-Co) sets in at potential of only 1.56 V with 

small Tafel slope of 50 mV.dec-1, which is more superb than that of RuO2 and bulk material 

Fe(II)1Fe(III)1)0.6/Bulk-MOF-Co. The findings show that the structure of ultrathin nanosheets 

and the Fe incorporation are critical to the outstanding performance of MOF nanosheets for 

tuning the electrocatalytic activity, which is of great significance in the field of MOF 

electrocatalysis. 

KEYWORDS: Fe-incorporated, ultrathin nanosheets, free-noble metal, metal–organic 

frameworks, oxygen evolution reaction. 

INTRODUCTION  

Due to increasing demand for global energy and the intensification of environmental protection 

issues, the development of renewable energy conversion techniques has received extensive 

attention. As far as the status is concerned, opening up alternative electrochemical storage 

technologies has great significance for the storage and utilization of renewable energy,1-6 at 

which, OER is a crucial half-reaction at anode. The OER process involves a four-electron route 

under alkaline conditions, and the most recognized theory is as follows: 
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the sluggish kinetics of OER commonly give rise to high overpotentials, extremely lowering the 

energy conversion efficiency of the devices.7,8 Thus, efficient electrocatalysts are extremely 

demanded to promote OER efficaciously. So far, noble metal-based catalysts have been deemed 

to be effective oxygen electrocatalysts for OER (such as RuO2, Rh2O3 and IrO2), but their 

intrinsic drawbacks of shortage and high-cost seriously impede their practical applications.9,10 

For the purpose of overcoming these issues, exploring highly efficient, low-cost and non-

precious-metal-containing electrocatalysts with comparable or even better electrocatalytic 

activity is the major task. 

Recently, a large supply of studies have been devoted to searching for non-precious 

alternatives, involving transition metal phosphides,11,12 and chalcogenides,13,14 perovskite 

oxides15 and MOFs.16-18 Among them, MOFs are promising materials acted as suitable catalyst 

candidates because of their adjustable pore structures and large surface areas.19-22 However, a 

large number of MOFs with their intrinsically low conductivity and instability in harsh 

electrolytes results electrocatalytic activities far from reaching the standard in practical 

applications. To undergo these native shortcomings, a number of researches have been devoted 

to exploring multiple engineering strategies, such as carbonization by annealing treatment. For 

example, Mu and coworkers23-26 have carried out tremendous related researches. However, the 

high temperature calcination generally requests multistep synthesis procedures and high energy 

input and the calcination usually induces shrink/agglomeration, which would destroy the 

structure of MOF and decrease the explosion of active sites. Recent works have demonstrated the 

MOF nanosheets with ultrathin thickness have the superior electrochemical properties.27-35 

Further compared with the bulk counterparts, MOF nanosheets are expected to provide not only 

more accessible active sites, but also faster mass transfer and diffusion. Therefore, it’s reasonable 
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that the miniaturization of MOF nanosheets could maximize the accessibility of active sites and 

is now becoming one of the most promising synthesis strategies for improved OER.36-39 Very 

recently, the nanostructure of Co/Ni-MOFs40, 41 and Fe-MOFs42 are regarded as high-efficiency 

oxygen electrocatalysts as well as are explored to be stable and active for OER. What is more, 

many researches have verified that Fe incorporating can further increase the OER properties of 

Co-based MOFs with high durability.21,43 In 2017, Shen and coworkers44 completely reported a 

modular synthesis method that the Co carboxylate cluster of paddle-wheel type were 

immobilized in a unmatched Fe(III)-node framework, which displayed satisfactory 

electrochemical activity and long-term electrochemical durability for OER. In 2018, Xiao et al.28 

prepared the ultrathin Co/Ni bimetal-organic framework nanobelts (Co/Ni-MOFs) by 

hydrothermal process. Successfully, the Co/Ni-MOF nanobelts catalyst attained exceedingly 

high bifunctional catalytic activities without pyrolysis. Using solvothermal process, Xie and 

coworkers18 prepared the Co/Fe-based bimetallic MOF nanosheet arrays integrated on a piece of 

Ni foam (MIL-53(Co-Fe)/NF), which can directly make a crucial contribution to the highly 

efficient electrocatalysts.  

 

Scheme 1. Schematic illustration of the fabrication process for (Fe(II)1Fe(III)1)0.6/NMOF-Co. 
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Drawing inspiration from the aboved researches, herein, we report the facile synthesis of 

(Fe(II)1Fe(III)1)x/NMOF-Co composites for OER by introducing iron ions with different valence 

states into Co-based MOF ultrathin nanosheets (NMOF-Co) and show its potential application in 

electrocatalysis. Scheme 1 shows the synthetic process of (Fe(II)1Fe(III)1)x/NMOF-Co (for 

details see Supporting Information). Experimental results demonstrate the brilliant 

electrocatalytic activity and stability of (Fe(II)1Fe(III)1)0.6/NMOF-Co for OER after loading with 

XC-72 carbon particles. Furthermore, (Fe(II)1Fe(III)1)0.6/NMOF-Co can be loaded on a nickel 

foam (NF) and achieved catalyst (Fe(II)1Fe(III)1)0.6/NMOF-Co/NF exhibits enhanced OER 

activity with 297 mV to afford 10 mA cm-2 that outperforms the commercial RuO2 catalyst. 

EXPERIMENTAL AND METHOD SECTION  

2.1. Synthesis of (Fe(II)1Fe(III)1)0.6/NMOF-Co. (Fe(II)1Fe(III)1)0.6/NMOF-Co was 

synthesized by a post-synthetic method in which the molar ratio of ammonium iron(II) sulfate to 

ferric sulfate remained as 1:1. NMOF-Co (3.5 mmol), ammonium iron(II) (1.4 mmol) sulfate and 

ferric sulfate (1.4 mmol) was immersed in acetonitrile (2 mL) under room temperature by stirring 

for 12 hours. Then the obtained mixture was washed with ethanol as well as centrifuged for 3~5 

times and dried for 6 hours under vacuum. The resulting product named 

(Fe(II)1Fe(III)1)0.6/NMOF-Co. For control, the same synthesis procedure was adopted for 

(Fe(II)1Fe(III)1)x/NMOF-Co by altering molar amounts of Fe(II)1Fe(III)1 and NMOF-Co. (x is 

the molar ratios of Fe(II)1Fe(III)1 to NMOF-Co). 

2.2. Synthesis of (Fe(II)1Fe(III)1)0.6/Bulk-MOF-Co. For comparison, 

(Fe(II)1Fe(III)1)0.6/Bulk-MOF-Co was prepared via the similar process to that of 

((Fe(II)1Fe(III)1)x/NMOF-Co except that Bulk-MOF-Co was used to replace NMOF-Co 

nanosheets. 
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2.3. Electrochemical measurements.  

According to the previous report,45 the TOF of (Fe(II)1Fe(III)1)0.6/NMOF-Co for OER was 

evaluated by the formula below: 

TOF = nO2 / ncat / t 

where nO2 is the amount of oxygen produced (mol), ncat is the amount of catalytic active centers 

in the catalyst (mol) and t is the electrolysis time (s). 

TOFtheoretical = J × A / (4 × F × m) 

Here, J is the current density at the overpotential of 0.33 V, and A and m are the area of the 

electrode and the number of moles of the catalysts that deposited on the GCE, respectively. F is 

the Faraday constant (96485 C·mol-1). We assumed all the metal atoms contribute to the activity. 

RESULTS AND DISCUSSION 

3.1. Morphology and Structure Characterization. In our previous work,46 NMOF-

Co possessing flower-like morphology were successfully prepared with the assistance of 

polyvinylpyrrolidone (PVP) using a bottom-up method, which is distinguished from their bulk 

counterpart Bulk-MOF-Co (Figure S1). By changing the molar ratios of Fe(II)1Fe(III)1 to 

NMOF-Co, the (Fe(II)1Fe(III)1)x/NMOF-Co with four different molar ratios can be obtained 

(Table S1 and Table S2). The Power X-ray diffraction (PXRD) patterns of NMOF-Co, 

(Fe(II)1Fe(III)1)0.3/NMOF-Co, (Fe(II)1Fe(III)1)0.6/NMOF-Co, (Fe(II)1Fe(III)1)3.5/NMOF-Co, and 

(Fe(II)1Fe(III)1)7.0/NMOF-Co shown well-defined and similar diffraction peaks that were in 

accordance with the simulated patterns in Fig. 1a and Fig. S2. It confirmed that the crystalline 

phase did not change after introducing Fe ions.47 Furthermore, the simulated sample belongs to 

bulk material Bulk-MOF-Co while (Fe(II)1Fe(III)1)0.6/NMOF-Co is two dimensional ultrathin 

nanosheets. The different synthesis process of Bulk-MOF-Co and (Fe(II)1Fe(III)1)0.6/NMOF-Co 

not only determines nucleate growth of MOFs but also controls their growth direction which 
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causes the materials to expose different crystal planes and result in differences of diffraction 

peaks. The slight differences in the peak positions and intensities of the XRD patterns of the 

(Fe(II)1Fe(III)1)0.6/NMOF-Co and simulated sample were possibly attributed to the different 

host‐guest interactions of the flexible (Fe(II)1Fe(III)1)0.6/NMOF-Co framework when Co2+ was 

partially replaced by Fe2+/Fe3+.48,49 The optimized molar ratio of (Fe(II)1Fe(III)1)/NMOF-Co was 

0.6:1 (Table S1). In order to obtain the most favorable activities, the linear sweep voltammetry 

(LSV) curves of iron ions of different valence states with diverse molar amounts of Fe(II) and 

Fe(III) under room temperature were recorded as shown in Fig. S3. These results suggested that 

molar ratios of Fe(II)/Fe(III) played a vital role in OER activity of (Fe(II)aFe(III)b)0.6/NMOF-Co 

(a and b are defined as molar ratios of Fe(II)/Fe(III) which the optimized value is 1:1). As shown 

in Fig. S4, the Fourier transform infrared spectra (FT-IR) shown negligible variance compared 

with the untreated samples NMOF-Co. Since four (Fe(II)1Fe(III)1)x/NMOF-Co are isostructural, 

only (Fe(II)1Fe(III)1)0.6/NMOF-Co is discussed below.  

The element chemical status of (Fe(II)1Fe(III)1)0.6/NMOF-Co was investigated by X-ray 

photoelectron spectroscopy (XPS), as demonstrated in Fig. 1b, 1c, 1d and 1f. The survey 

spectrum of (Fe(II)1Fe(III)1)0.6/NMOF-Co shown the presence of C, N, O, Co and Fe in Fig. 1b. 

The C 1s spectrum (Fig. 1c) can be deconvoluted well into four surface carbon components at 

284.6 eV (nonoxygenated carbon: C-C), 285.3 eV (C-N), 286 eV (C-O) and 288 eV (carboxyl 

carbon: O=C-O). In the high-resolution of O 1s region, three peaks at approximately 530.95, 

531.8 and 533.05 eV displayed the existence of Co-O, C=O-O and C-O, respectively (Fig. 1d). 

Co 2p displayed major peaks of Co 2p3/2 (781.1 eV) and Co 2p1/2 (796.8 eV), implying the 

existence of Co2+ state (Fig. 1e).36 The high-resolution Fe 2p spectra can be fitted into six peaks 

from 708 eV to 735 eV in Fig. 1f, namely satellite peak (715.9 eV and 719.1 eV) and Fe 2p1/2 
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(Fe(II) 723.6 eV, Fe(III) 725 eV) and Fe 2p3/2 (Fe(II) 711.1 eV, Fe(III) 713.5 eV), illustrating 

that both ferrous and ferric irons existed in (Fe(II)1Fe(III)1)0.6/NMOF-Co.50 Inductively coupled 

plasma-mass spectrometry (ICP) measurements revealed that it contained 7.41% Co and 4.64% 

Fe, implying a 0.6:1 stoichiometry of Fe/Co in (Fe(II)1Fe(III)1)0.6/NMOF-Co. The ICP results 

were well-consistent with the added ratios (Table S2).  

 
Fig. 1. (a) PXRD patterns for Fe(II)1Fe(III)1)0.6/NMOF-Co and NMOF-Co. XPS spectra of (b) 

Survey scan, (c) C 1s, (d) O 1s, (e) Co 2p and (f) Fe 2p of (Fe(II)1Fe(III)1)0.6/NMOF-Co. 
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Fig. 2. (a), (b) Low and high-resolution SEM images of NMOF-Co nanosheets. (c) SEM images 

of (Fe(II)1Fe(III)1)0.6/NMOF-Co nanosheets. Typical (d), (e) TEM image and (f) AFM image of 

(Fe(II)1Fe(III)1)0.6/NMOF-Co nanosheets. (g) SEM-EDX elemental mapping of 

(Fe(II)1Fe(III)1)0.6/NMOF-Co nanosheets. 

The morphological properties of NMOF-Co and (Fe(II)1Fe(III)1)0.6/NMOF-Co were vividly 

seen from Fig. 2. As shown in Fig. 2a and 2b, scanning electron microscopy (SEM) images 

shown that the obtained NMOF-Co was composed of numerous ultrathin nanosheets. In 

particular, after introducing Fe ions, (Fe(II)1Fe(III)1)x/NMOF-Co inherited the nanosheets-

stacked morphology of NMOF-Co (Fig. 2c and Fig. S1), in sharp contrast to the Bulk-MOF-Co, 

which exhibited irregular bulks with a wide size distribution varying from hundreds of 

nanometers to dozens of micrometers (Fig. S1a). Additionally, transmission electron microscopy 

(TEM) images (Fig. 2d and 2e) provided more insight into the structure of 

(Fe(II)1Fe(III)1)0.6/NMOF-Co, proving the nanosheet nature of this material. Fig. 2e further 
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demonstrated that the as-synthesized sample presented ultrathin and translucent sheet-like 

morphology, which was advantageous to the transport of electrons and protons. The thickness of 

composite ultrathin nanosheets were determined to be ~4.0 nm by atomic force microscopy 

(AFM) measurement (Fig. 2f). The energy-dispersive X-ray spectrum (EDX)-mapping revealed 

the elements of C, N, O, Co and Fe without other impurities in MOFs and their homogeneous 

distribution throughout the whole construction in Fig. 2g. All abovementioned data suggested the 

successful synthesis of (Fe(II)1Fe(III)1)0.6/NMOF-Co nanosheets. 

3.2. Electrochemical Performance.  The electrocatalytic OER performance of as-prepared 

(Fe(II)1Fe(III)1)0.6/NMOF-Co were explored in alkaline condition (1M KOH electrolyte) with a 

standard three-electrode system, where XC-72 were modified with as-prepared catalysts by drop-

casting as the working electrode to improve the conductivity. All data were obtained without iR-

correction. Commercially RuO2 was tested under the same condition for comparison. The linear 

sweep voltammetry curves (LSV), Tafel plots and electrochemical impedance spectroscopy 

(EIS) results were presented in Fig. 3. As shown in Fig. 3a, the onset potential (Eonset) of NMOF-

Co was 1.281 V. Introducing Fe ions caused the Eonset much lower for (Fe(II)1Fe(III)1)0.6/NMOF-

Co, highlighting the positive role of Fe ions. Remarkably, the (Fe(II)1Fe(III)1)0.6/NMOF-Co with 

two-dimensional morphology shown superior OER performance with an onset potential of only 

1.267 V, much lower than that of (Fe(II)1Fe(III)1)0.6/Bulk-MOF-Co (1.277 V), suggesting that 

the morphology of ultrathin nanosheets was beneficial for improved OER. Noticeably, the Eonset 

of (Fe(II)1Fe(III)1)0.6/NMOF-Co was comparable to that of RuO2 (1.269 V), implying its 

excellent OER activity. Tafel slope analysis further confirmed the fast OER kinetics of 

(Fe(II)1Fe(III)1)0.6/NMOF-Co. As shown in Fig. 3b, the Tafel slop of (Fe(II)1Fe(III)1)0.6/NMOF-

Co was as low as 50 mV dec-1, lower than those of NMOF-Co (144 mV.dec-1), 
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(Fe(II)1Fe(III)1)0.6/Bulk-MOF-Co (95 mV dec-1) and RuO2 (77 mV dec-1), suggesting the faster 

OER kinetics of (Fe(II)1Fe(III)1)0.6/NMOF-Co. In addition to the Eonset and Tafel slope values, 

the current density of 10 mA cm-2 was another critical criterion for assessment of OER 

performance. As presented in Fig. 3c, the potentials of NMOF-Co, (Fe(II)1Fe(III)1)0.6/Bulk-

MOF-Co, (Fe(II)1Fe(III)1)0.6/NMOF-Co and RuO2 were 1.64, 1.625, 1.56 and 1.565 V, 

respectively. To further investigate the transfer kinetics of charge carriers, electrochemical 

impedance spectroscopies (EIS) was measured in 1.0 M KOH. The EIS results (Fig. 3d) shown 

that (Fe(II)1Fe(III)1)0.6/NMOF-Co displayed a small charge transfer resistance (Rct) of 50 ohm at 

the overpotential of 330 mV, which was far less than that of (Fe(II)1Fe(III)1)0.6/Bulk-MOF-Co 

(82 ohm)，RuO2 (56 ohm in Fig. S8) and NMOF-Co (100 ohm). It revealed a faster electron 

transfer ability of (Fe(II)1Fe(III)1)0.6/NMOF-Co owing to incorporation of Fe ions and ultrathin 

nano-structure. As depicted in Fig. 3e, the catalyst (Fe(II)1Fe(III)1)0.6/NMOF-Co displayed 

optimal overpotential of 330 mV to reach the 10 mA cm-2, showing an exceptional OER 

performance. Collectively, these electrochemical results undoubtedly demonstrated that both Fe 

ions and nanosheets morphology were favorable for enhanced OER. Such that we then optimized 

the content of Fe ions in NMOF-Co. Among them, the overpotential of 

(Fe(II)1Fe(III)1)0.6/NMOF-Co was the lowest, indicating more superior OER reaction kinetics. 

Besides, the high activity of the NiFe-UMNs was also verified by the TOF calculated at 1.12 s-1. 

Additionally, the long-term stability was another significant parameter to estimate 

electrocatalysts for applicability. The stability of (Fe(II)1Fe(III)1)0.6/NMOF-Co was tested by 

chronopotentiometry and cyclic voltammetry (CV). As shown in Fig. 3f, after CV between 1.2 

and 1.6 V for 1000 cycles,  (Fe(II)1Fe(III)1)0.6/NMOF- Co merely displayed mild degradation, 

demonstrating its preferable durability during the electrocatalytic process in this work. 
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Moreover, the i-t curves at 10 mA cm-2 retained its electrochemical activity for 10000 s (inset of 

Fig. 3f). To further confirm the possible variance of the chemical composition on the surfaces 

and the electronic states of (Fe(II)1Fe(III)1)0.6/NMOF-Co electrocatalyst, XPS measurements of 

this sample after the OER tests were also done in Fig. S5. After OER performance, the signals of 

Co 2p (Fig. S5a) and Fe(II) shifted to higher binding energies, while the signals of Fe(III) shifted 

to lower binding energies in the Fe 2p spectrum (Fig. S5b), indicating a partial electron transfer 

between different metal ions. However, the molar ratio of iron ions with disparate-valence states 

was almost unvaried in (Fe(II)1Fe(III)1)0.6/NMOF-Co (1.1:1). The aboved data shown that two 

valence irons at work. It revealed that the addition of different-valence Fe species can change the 

ability of the material to accept electrons during OER tests, which influenced the coupling effect 

between Co and Fe in (Fe(II)1Fe(III)1)0.6/NMOF-Co and thus promoted the OER kinetics 

synergistically.31,51,52 In order to understand the improved OER performance of 

(Fe(II)1Fe(III)1)0.6/NMOF-Co in comparison to that of (Fe(II)1Fe(III)1)0.6/Bulk-MOF-Co, NMOF-

Co and (Fe(II)1Fe(III)1)x/NMOF-Co , their electrochemically active surface areas (ECSAs) were 

conducted from the electrochemical double-layer capacitance (Cdl) via collecting cyclic 

voltammograms of 1.0 to 1.24 V vs. RHE (Fig. 4a and 4b). As shown in Fig. 4a, the CV curves 

of different catalysts at a same rate of 40 mV s-1 and the (Fe(II)1Fe(III)1)0.6/NMOF-Co at 

miscellaneous rates varying from 20 to 80 mV s-1 (Fig. 4b and Fig. S6). The Cdl results suggested 

that composited material (Fe(II)1Fe(III)1)0.6/NMOF-Co had larger ECSA than that of 

(Fe(II)1Fe(III)1)0.6/Bulk-MOF-Co when used as alkaline (1M KOH) OER electrocatalysts. As 

shown in Fig. 4c, (Fe(II)1Fe(III)1)0.6/NMOF-Co (11.75 mF cm-2) exhibited a larger Cdl than that 

of (Fe(II)1Fe(III)1)0.6/Bulk-MOF-Co (2.24 mF cm-2), (Fe(II)1Fe(III)1)0.3/NMOF-Co (7.35 mF cm-

2), 
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Fig. 3. (a) LSV curves and (b) Tafel plots of (Fe(II)1Fe(III)1)0.6/Bulk-MOF-Co, 

(Fe(II)1Fe(III)1)0.6/NMOF-Co, NMOF-Co and RuO2 electrocatalysts in the OER in 1M KOH. (c) 

Comparison of the overpotential at current density of 10 mA cm-2. (d) Electrochemical 

impedance spectrum of (Fe(II)1Fe(III)1)0.6/Bulk-MOF-Co, (Fe(II)1Fe(III)1)0.6/NMOF-Co and 

NMOF-Co catalysts. (e) LSV curves of (Fe(II)1Fe(III)1)x/NMOF-Co with different molar ratios 

of Fe/Co. (f) Polarization curves of (Fe(II)1Fe(III)1)0.6/NMOF-Co after 0 and 1000 CV cycles 

(inset: OER time-dependent stability of (Fe(II)1Fe(III)1)0.6/NMOF-Co by chronoamperometric 

response). 
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 (Fe(II)1Fe(III)1)3.5/NMOF-Co (10.9 mF cm-2), (Fe(II)1Fe(III)1)7.0/NMOF-Co (7.37 mF cm-2) and 

NMOF-Co (1.17 mF cm-2). The results suggested that the (Fe(II)1Fe(III)1)0.6/NMOF-Co were not 

only highly active but also stable electrocatalysts for OER, that further confirming the excellent 

OER performance of the composite catalysts. The catalyst NMOF-Co composited with 

Fe(II)1Fe(III)1 performed optimally at the molar ratio of 1:0.6, while either lower or higher 

dopant ratio led to decrease OER activity. Therefore, the positive effect of Fe into 

(Fe(II)1Fe(III)1)x/NMOF-Co for OER was confirmed, and the possible mechanism could be 

explained that iron ions were active sites and cobalt cations contributed to formulating these 

active sites in catalysts for oxygen evolution.53-55 

 

Fig. 4. (a) Cyclic voltammograms collected at same scan rate (40 mV s-1) for 

(Fe(II)1Fe(III)1)x/NMOF-Co, (b) Cyclic voltammograms collected at various scan rates (20, 40, 

60 and 80 mV s-1) for (Fe(II)1Fe(III)1)0.6/NMOF-Co, (c) The double-layer capacitance (Cdl) of 

(Fe(II)1Fe(III)1)x/NMOF-Co. 

It should be noted that MOF ultrathin nanosheets electrocatalysts grown on conducting 

materials such as carbon substrate, nickel foam and copper foam have remarkable 

electrochemical performance due to rapid charge transport and high percentages of active 

sites.21,56-62 Inspired by the abovementioned strategies, we fabricated the work-electrodes by 

compositing (Fe(II)1Fe(III)1)0.6/NMOF-Co with Ni foam ((Fe(II)1Fe(III)1)0.6/NMOF-Co/NF). As 
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expected, the OER activities of (Fe(II)1Fe(III)1)0.6/NMOF-Co/NF were obviously enhanced, 

implying a lower overpotential of 297 mV at 10 mA cm-2 (Fig. S7a) and the corresponding Tafel 

slopes (Fig. S7b) of (Fe(II)1Fe(III)1)0.6/NMOF-Co/NF, (Fe(II)1Fe(III)1)0.6/Bulk-MOF-Co/NF, 

NMOF-Co/NF, RuO2/NF and NF were 55, 81, 85, 70 and 119 mV dec-1 respectively. Ultimately, 

several recently reported highly active electrocatalysts for OER were summarized in Table S3. 

The hierarchical ultrathin nanosheets in (Fe(II)1Fe(III)1)x/NMOF-Co not only provided electron 

transport pathway but also accelerated electron transfer capabilities, thus resulting the brilliant 

OER performance in alkaline medium. Moreover, the unique nanostructure also contributed to 

facilitate more efficacious contact between reactants and catalysts as well as promote mass 

transfer efficiency.  

CONCLUSION  

In summary, we successfully prepared a series of Fe(II)1Fe(III)1)x/NMOF-Co with 

controllable molar ratios as high-performance OER electrocatalysts via a post-synthetic strategy. 

By compositing the optimized electrocatalyst (Fe(II)1Fe(III)1)0.6/NMOF-Co with XC-72, an 

potential of 1.56 V vs. RHE with Tafel slope of 50 mV dec-1 were achieved for OER in 1M 

KOH. The intrinsic activity of the obtained electrocatalyst was also investigated by measuring 

the turnover frequency (TOF = 1.12 s-1). It is concluded that the MOF ultrathin nanosheets of 

(Fe(II)1Fe(III)1)x/NMOF-Co not only facilitated more efficient electron transfer but also 

endowed the material with more active sites for efficacious contact between the reactants and 

catalysts. It is also worth noting that, by adjusting the molar ratios of Fe(II)1Fe(III)1 to NMOF-

Co, we can modulate the activity and stability in a controllable manner. This work opens up a 

new route for reasonable design and preparation of high-performance nonprecious-metal 

catalysts for electrocatalysis. 
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ToC Figure 

 

Fe-incorporated Co-based ultrathin metal-organic framework catalysts (Fe(II)1Fe(III)1)x/NMOF-

Co) exhibits superior oxygen evolution reaction (OER) catalytic performance, and shines the 

new light for the real application of free-noble metal catalysts in electrocatalysis. 

 

HIGHLIGHTS  

• Controlled molar ratios of Fe to NMOF-Co inside Co-based ultrathin nanosheets is designed.  

• The ultrathin nanostructures provided extra active sites and enlarged active area.  
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• High OER activity is achieved due to large ECSA and optimized molar ratios of Fe to MOF 

nanosheets. 

• The catalyst showed excellent catalytic activity and stability for OER. 

 

 


