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A B S T R A C T   

Hitherto, developing an economical and stable high-activity bifunctional Pt catalyst for oxygen reduction re-
action (ORR) and hydrogen evolution reaction (HER) becomes necessary for fuel cells and regeneration fuel cell 
system. However, how to uniformly disperse and firmly fix Pt nanoparticles (NPs) on carbon support with 
optimal particle size for catalysis is still a big challenge. Herein, by taking advantage of the isolating effect of the 
cobalt (Co) single atom site to Pt, strong interaction between Co single atoms and Pt, and the confinement of the 
porous carbon matrix derived metal organic frameworks, we successfully evenly immobilize Pt NPs on ZnCo-ZIF 
originated porous nitrogen-doped carbon matrix with rich cobalt single atoms (Co SAs-ZIF-NC) as multiple active 
sites. Compared with the commercial Pt/C catalyst, Pt@Co SAs-ZIF-NC, with ultralow Pt loading and ideal 
particle size, not only increases the active center, but also promotes the catalysis kinetics, greatly improving the 
ORR and HER catalytic activity. Under acidic conditions, its half-wave potential (0.917 V) is superior to com-
mercial Pt/C (0.868 V), and the mass activity (0.48 A per mgPt) at 0.9 V is 3 times that of Pt/C (0.16 A per mgPt), 
surpassing the U.S. DOE target of 0.44 A per mgPt. Besides, it also shows outstanding HER performance. At 20 
and 30 mV, its mass activity is even 4.5 and 13.6 times that of Pt/C. When further employed for HER in seawater, 
its mass activity is about 4 times as high as that of Pt/C, demonstrating the great potential applications.   

1. Introduction 

With the intensification of environmental pollution and traditional 
fossil fuel reserves facing crisis, sustainable and cost-efficient alterna-
tives such as proton exchange membrane fuel cells (PEMFCs) is urgent 
[1]. The main factors limiting the development of PEMFCs include slow 
cathodic oxygen reduction kinetics and insufficient pure hydrogen 
product as anode fuel [2–4]. Therefore, it is imperative to find effective 
catalysts for oxygen reduction reaction (ORR) and hydrogen evolution 
reaction (HER) by electrochemical water splitting [5–9]. 

Hitherto, the most effective catalysts for ORR and HER are still 
platinum (Pt) based catalysts for fuel cells and regeneration fuel cells 

[10,11]. However, commercial Pt/C as the main catalyst for ORR and 
HER, does not have sufficient stability under severe conditions, heavily 
limiting its large-scale use [12–16]. For promoting the industrialization 
of PEMFCs, reducing the dosage of Pt and enhancing the stability of 
Pt-based catalysts is the top priority [17–20]. For a long time, to reduce 
the amount of Pt, researches have been devoted to preparing highly 
efficient Pt catalysts [21], including alloying with non-precious metals 
or reducing the size of platinum particles [22–26]. However, the prep-
aration conditions of the alloy are harsh, and the size of Pt particles is 
difficult to control [27,28]. As reported, selecting suitable support to 
adjust the size of Pt particles with enhanced active sites is a facile and 
effective method to prepare highly active Pt-based catalysts [29]. 
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In recent years, since large specific surface area, coordinated aper-
ture size and abundant nitrogen content, zeolite-based imidazole 
frameworks (ZIFs) have been confirmed suitable for preparing pre-
cursors of tailor-made carbon-based materials, [30–36]. Furthermore, 
ZIF-derived carbon materials doped with transition metals (Fe, Co, Ni, 
Cu, etc.) have shown excellent ORR or HER activity [37]. Thus, their 
high intrinsic activity and large specific surface area make them 
outstanding supports for noble metal for efficient electrocatalysis [38, 
39]. For example, Chong et al. chose Co-based or bimetallic Zn-Co 
zeolite imidazole framework to produce Co sites by pyrolysis, then 
impregnated the Pt source, and obtained the PtCo alloy through further 
thermally activation. Compared with commercial Pt/C, it has higher 
activity and stability in fuel cells [40]. Yin et al. synthesized single Co 
atom with precise N coordination, making it useful as a high-quality 
oxygen reduction catalyst under alkaline conditions [3]. 

Inspired by the synergetic catalytic effect of Co sites in MOF- 
originated materials, to prepare a high-efficiency bifunctional low-Pt 
catalyst, here Co single atom sites in porous N-doped carbon are pro-
posed to isolate and anchor Pt NPs, limiting the growth of Pt NPs. Thus, 
carbon-based materials with Co single atoms (Co SAs-ZIF-NC) derived 
from bimetallic ZIFs (ZnCo-ZIF) can be chosen as support for Pt NPs. 
Benefiting from the porous structure and the isolating-anchoring effect 
of cobalt atom sites, Pt NPs, with ideal particle size, are immobilized on 
N-doped carbon materials (Pt@Co SAs-ZIF-NC). In terms of the syner-
gistic effect of Pt NPs and Co ZIF-NC catalysis system, Pt@Co SAs-ZIF-NC 
shows excellent ORR and HER performance under acidic and seawater 
conditions. 

2. Results and discussion 

2.1. Synthesis and structural characterization 

As depicted in Scheme 1, ZnCo-ZIF was first synthesized, subse-
quently heated to 900 ◦C under nitrogen atmosphere, and naturally 
cooled to obtain cobalt single atoms that confined in N-doped carbon 
matrix (Co SAs-ZIF-NC). After that, Co SAs-ZIF-NC was reacted with 
H2PtCl6 solutions at 70 ◦C to get H2PtCl6@Co SAs-ZIF-NC. Finally, 
H2PtCl6@Co SAs-ZIF-NC was reduced at 300 ◦C for 1 h under 5% H2/Ar 
atmosphere to obtain Pt NPs anchored by single cobalt atoms (Pt@Co 
SAs-ZIF-NC). The same experiment was performed on ZIF-67 and ZIF-8, 
and Pt loaded N-doped carbon matrix with cobalt NPs (Pt@Co ZIF-NC) 
and Pt loaded N-doped carbon matrix (Pt@ZIF-NC) were obtained, 
respectively. 

From scanning electron microscope (SEM) (EIS, Fig. S1a, b), and 
transmission electron microscope (TEM) images (EIS, Fig. S1c, d), the as- 
synthesized Co SAs-ZIF-NC is uniform in size and presents a regular 
dodecahedron. As seen from Fig. S1e, f and S1g, h, Pt NPs are scattered 
on the appearance of Co SAs-ZIF-NC uniformly. The high-resolution 
TEM (HRTEM) image (Figs. 1a, S2) shows that the main size of Pt par-
ticles in Pt@Co SAs-ZIF-NC is concentrated in 2–4 nm (about 3.32 nm in 
average). Fig. 1d displays that Pt NPs in Pt@Co SAs-ZIF-NC are fixed in 
the carbon matrix, and the lattice fringes with a pitch of 0.23 nm 

correspond to the (111) plane of metallic Pt NPs. While high angle 
annular dark field scanning TEM (HAADF-STEM) demonstrates that Co 
predominantly exists in the form of single atoms located around Pt NPs 
(Figs. 1e, S3). In contrast, although Pt@ZIF-NC also shows a regular 
rhombohedral dodecahedron (Figs. 1b, S4), its Pt NPs are uneven and 
randomly distributed. At the same time, for Pt@Co ZIF-NC, its structure 
is damaged and becomes irregular due to the massive agglomeration of 
Co particles, and Pt particles are too large and arrange randomly 
(Figs. 1c, S5). These will greatly affect the activity and efficiency of Pt 
catalysts. HAADF-STEM images and homologous EDX element map-
pings (Fig. 1f–j) further demonstrate uniform distribution of Co and 
nano-aggregated Pt. The Pt loading in Pt@Co SAs-ZIF-NC is 5.01 wt% 
detected with ICP-OES (Table S1). 

From the X-ray diffraction (XRD) pattern (Fig. 2a), Pt@Co SAs-ZIF- 
NC and Co SAs-ZIF-NC possess a broad peak at approximately 25◦, 
which is attributed to the C (002) plane. The diffraction peaks located at 
2θ = 39.9◦, 46.4◦, and 67.8◦ belong to (111), (200), and (220) planes of 
Pt, respectively, indicating the crystal structure of Pt NPs in Pt@Co SAs- 
ZIF-NC is face-centered cubic (fcc). 

Due to the spin orbit interaction, the high-resolution Pt 4f spectrum 
of X-ray photoelectron spectroscopy (XPS) can be fitted to Pt 4f7/2 
(71.3 eV and 74.65 eV) and Pt 4f5/2 (72.6 eV and 75.58 eV) (Fig. 2b), 
matching with Pt0 and Pt ions (Pt2+ and Pt4+), separately [41–43]. 
Compared with Pt/C, a negative shift (0.25 eV) of binding energy is 
adverted for the Pt 4f doublet on Pt@Co SAs-ZIF-NC, while the shift of 
Pt@Co ZIF-NC is 0.15 eV (EIS, Fig. S6). The binding energies of Co 2p3/2 
peaks for Pt@Co SAs-ZIF-NC and Pt@Co ZIF-NC are 780.7 eV, 782.9 eV, 
786.3 eV and 779.4 eV, 782.2 eV, 786.3 eV, respectively (Fig. 2c, d). 
Compared with Co0 (778.1–778.8 eV), Co2+ (780.9 eV) and Co3+

(779.8 eV) [29,44,45], there is more nature of ion Coδ+ (0 < δ < 3) of 
Co in Pt@Co SAs-ZIF-NC, while Pt@Co ZIF-NC possesses more Co0 

(NPs). By comparison with Co SAs-ZIF-NC (781.0 eV, 783.2 eV, 
786.6 eV) (EIS, Fig. S7a, b), after anchoring Pt NPs, the binding energy 
of Co 2p3/2 peaks in Pt@Co SAs-ZIF-NC exhibits a negative shift. From 
the XPS spectrum of N 1s, the content of graphitic N in Pt@Co 
SAs-ZIF-NC increases significantly in comparison with that of Co 
SAs-ZIF-NC. With the increased graphitic N, it could attract more elec-
trons from the neighboring C atoms and provide more electrons to Co 
and Pt, which leads to the negative shift of Pt and Co [46,47]. All N 1s 
XPS spectra in Co SAs-ZIF-NC, Pt@Co SAs-ZIF-NC and Pt@Co ZIF-NC 
have three dividing peaks, representing pyridinic N (398.8 eV), pyrro-
lic N (400 eV), and graphitic N (401.2 eV) [44]. Among them, Pt@Co 
SAs-ZIF-NC and Co SAs-ZIF-NC possess an enhanced pyridinic N and 
graphitic N (Figs. 2e, f and S7). The increased pyridinic N in can greatly 
reduce the localization of electrons around the cobalt center, improve 
the interaction with oxygen-containing species, and reduce the energy 
barrier of the intermediate [48]. Besides, the graphitic N bonded with 
three carbon atoms leaves a lone electron, which can be contributed to a 
Pt atom to transform its electron layout. 

Scheme 1. Schematic diagram of the synthesis for Pt@Co SAs-ZIF-NC.  
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2.2. Oxygen reduction catalysis 

Firstly, the ORR catalytic activity of catalysts with different loadings 
was explored. As shown in Fig. S8, when the load capacity reaches to 
20 μL (25 ugPt cm− 2), the catalyst has the best half-wave potential (E1/2) 
and mass activity. Then, based on the Pt loading, a more in-depth 
electrocatalytic investigation was carried out. Fig. 3a exhibits the cy-
clic voltammetry (CV) curves of all catalysts amid 0 and 1.2 V (vs RHE) 
in N2-saturated 0.1 M HClO4. The adsorption and desorption peaks of 
hydrogen can be observed in the region of 0 < E < 0.4 V, and the 
electrochemical surface area (ECSA) of Pt@Co SAs-ZIF-NC (71 m2 per g 
Pt) is on a par with Pt/C (70 m2 per g Pt), while which of Pt@Co ZIF-NC 
(52 m2 per g Pt) and Pt@ZIF-NC (58 m2 per g Pt) is lower. 

Fig. 3b presents the linear sweep voltammetry (LSV) curves of the 
five catalysts. Their ORR catalytic capability is in order: Pt@Co SAs-ZIF- 
NC > Pt/C > Pt@Co ZIF-NC > Pt@ZIF-NC > Co SAs-ZIF-NC. Compared 
with Pt/C (E1/2 = 0.868 V, onset potential =0.94 V), the half-wave po-
tential (0.919 V) and onset potential (1.05 V) of Pt@Co SAs-ZIF-NC are 

significantly improved, which rivals most reported noble metal catalysts 
(Table S2). The Tafel slope of Pt@Co SAs-ZIF-NC is 62 mV dec− 1, lower 
than that of Pt/C (78 mV dec− 1), Pt@Co ZIF-NC (95 mV dec− 1), 
Pt@ZIF-NC (94 mV dec− 1) and Co SAs-ZIF-NC (64 mV dec− 1), suggest-
ing that Pt@Co SAs-ZIF-NC has a faster ORR kinetics than Pt/C and the 
other three catalysts (Fig. 3c). To further explore the reaction mecha-
nism of Pt@Co SAs-ZIF-NC, LSV testing under different speeds of 
625–2500 rpm were performed. As the speed increases, the onset po-
tential remains constant and the current density gradually increases 
(EIS, Fig. S9a). Koutecky-Levich (K-L) diagram of Pt@Co SAs-ZIF-NC 
shows a very good linear relationship at different potentials (EIS, 
Fig. S9b), indicating the electron transfer number of each oxygen 
molecule in the ORR is basically the same. And the average electron 
transfer number of Pt@Co SAs-ZIF-NC is 3.9, demonstrating that its ORR 
process is highly close to four-electron transfer. 

Furthermore, the mass activity of Pt@Co SAs-ZIF-NC was calculated 
to be 2.8 A/mgPt at 0.85 V (vs RHE), 6 times that of commercial Pt/C 
catalyst (0.45 A/mgPt) (Fig. 3d). When the potential reaches 0.9 V (vs 

Fig. 1. HRTEM image of (a) Pt@Co SAs-ZIF-NC, (b) Pt@ZIF-NC, (c) Pt@Co ZIF-NC. (d) Magnifying HRTEM image of Pt@Co SAs-ZIF-NC. (e) HAADF-STEM image of 
Pt@Co SAs-ZIF-NC, corresponding FFT of the area indicated by the orange box, enlarged area indicated by the yellow box, the yellow circle encircles the cobalt single 
atom. (f–j) EDX elemental maps of Pt@Co SAs-ZIF-NC: Co (green), Pt (red), N (blue) and C (yellow). 
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Fig. 2. (a) XRD pattern. (b) XPS spectrum of Pt 4f for Pt@Co SAs-ZIF-NC and Pt/C. (c) Co 2p spectrum for Pt@Co SAs-ZIF-NC. (d) Co 2p spectrum for Pt@Co ZIF-NC. 
(e) N 1s spectrum for Pt@Co SAs-ZIF-NC. (f) N 1s for Pt@Co ZIF-NC. 

Fig. 3. (a) CV curves recorded in N2 saturated 0.1 M HClO4 solution. (b) ORR polarization curves and (c) Tafel slopes of Pt@Co SAs-ZIF-NC, Pt@Co ZIF-NC, Pt@ZIF- 
NC, Pt/C and Co SAs-ZIF-NC. (d) Mass activity and (e) specific activity of Pt@Co SAs-ZIF-NC and Pt/C at 0.85 and 0.9 V for ORR. (f) ORR polarization curves of 
Pt@Co SAs-ZIF-NC and commercial Pt/C (inset) before and after 5000 cycles. 
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RHE), its mass activity (0.48 A/mgPt) is still 3 times that of Pt/C 
(0.16 A/mgPt) and surpass the 2020 U.S. Department of Energy target 
(0.44 A/mgPt). In addition, as shown in Fig. 3e, the specific activity of 
Pt@Co SAs-ZIF-NC at 0.85 V (vs RHE) and 0.9 V are 3.9 mA cm2 and 
0.64 mA cm2, which are 6 times and 3 times higher than that of Pt/C 
(0.64 mA cm2 at 0.85 V, 0.21 mA cm2 at 0.9 V), respectively. 

The stability test was then measured with accelerating cycling be-
tween 0.65 and 1.0 V in O2 saturated 0.1 M HClO4 solution. After 5000 
cycles, the half-wave potential of Pt@Co SAs-ZIF-NC is only 3 mV less 
than before, whereas it is 21 mV of Pt/C (Fig. 3f). And the morphology 
of Pt@Co SAs-ZIF-NC is basically stable after the CV acceleration (EIS, 
Fig. S10a, b), whose particle size only changes from the original 
3.32–3.42 nm (EIS, Fig. S10c, d). The stability tests were measured by 
current versus time (i-t) chronoamperometric response at applied bias 
voltage of 0.69 V for 40,000 s. As shown in Fig. S11, the normalized 
current loss of Pt@Co SAs-ZIF-NC is only 11.9%, much smaller than 
commercial Pt/C (29.12%). 

2.3. Hydrogen evolution catalysis 

HER properties were first detected at ambient temperature in 0.5 M 
H2SO4 electrolytes. According to Fig. 4a, Pt@Co SAs-ZIF-NC shows 
splendid HER catalytic activity, where the initial overpotential is only 
15 mV, and it requires merely 27 mV overpotential when the current 
density is 10 mA cm− 2, preceding Pt/C (34 mV), Pt@Co ZIF-NC 
(37 mV), Pt@ZIF-NC (37 mV) and the most reported Pt-based catalysts 
(Figs. 4b, S13, Table S3). In addition, it is far better than that of Co SAs- 
ZIF-NC (261 mV@10 mA cm− 2) (EIS, Fig. S14). Similarly, when the 
current density reaches 50 mA cm− 2, it barely needs 34 mV over-
potential, while Pt/C, Pt@Co ZIF-NC and Pt@ZIF-NC require 45 mV, 
48 mV and 55 mV overpotential, respectively. As exhibited in Fig. 4c, 
Tafel slope values of Pt@Co SAs-ZIF-NC, Pt@Co ZIF-NC, Pt@ZIF-NC and 
Pt/C are 21, 19, 28 and 21 mV dec− 1, respectively. According to the 
classical theory, the Tafel mechanism should be mainly responsible for 
their HER processes [39,49,50]. Notably, the Nyquist diagram shows 
that Pt@Co SAs-ZIF-NC has lower charge transfer resistance when 
compared with Pt@Co ZIF-NC and Pt@ZIF-NC, and also slightly smaller 
than Pt/C (Fig. 4d), indicating that the mass diffusion process and the 

Fig. 4. (a) HER polarization curves of Pt@Co SAs-ZIF-NC, Pt@Co ZIF-NC, Pt@ZIF-NC and Pt/C in 0.5 M H2SO4 electrolyte at a scan rate of 5 mV s− 1. (b) Corre-
sponding overpotentials (j = 10/50 mA cm− 2). (c) Tafel plots. (d) Electrochemical impedance spectroscopy (EIS) collected in the frequency range of 0.01–105 Hz. (e) 
LSV curves normalized by loaded Pt on electrodes. (f) Mass activity of Pt@Co SAs-ZIF-NC and Pt/C at 20 and 30 mV. (g) Polarization curves of Pt@Co SAs-ZIF-NC and 
Pt/C (inset) before and after 5000 CV cycles. (h) LSV curves in the seawater normalized by Pt loading on electrodes. (i) Mass activity of Pt@Co SAs-ZIF-NC and Pt/C 
at 300 and 400 mV in the seawater. 
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charge transfer are accelerated at the Pt@Co SAs-ZIF-NC electro-
de-electrolyte interface. 

To further explore the intrinsic activity, LSV curves for Pt@Co SAs- 
ZIF-NC and Pt/C was normalized by Pt loading (Fig. 4e), then their 
mass activity was calculated. As shown in Fig. 4f, at 20 and 30 mV, the 
mass activity of Pt@Co SAs-ZIF-NC is 0.18 and 1.5 A/mgPt, respectively, 
which is 4.5 and 13.6 times as much as that of Pt/C. In terms of stability 
testing, Pt@Co SAs-ZIF-NC is almost overlapped with the original LSV 
curve (only increase of 2.5 mV) after 5000 cycles, while Pt/C increases 
by 7 mV after 5000 cycles (Fig. 4g). In addition, it can be seen that the 
morphology of Pt@Co SAs-ZIF-NC is basically stable after the CV ac-
celeration (EIS, Fig. S15a, b), and there is no binding energy shift of Pt 4f 
and Co 2p peaks for Pt@Co SAs-ZIF-NC through XPS analysis (EIS, 
Fig. S16a, b). The above results manifest that Pt@Co SAs-ZIF-NC owns 
better activity and stability in acidic media. 

Moreover, Pt@Co SAs-ZIF-NC was employed for hydrogen evolution 
in seawater, and its catalytic performance is basically the same as that of 
Pt/C (EIS, Fig. S17). But when the LSV (Fig. 4h) was normalized by Pt 
loading, it can be calculated that, at 300 and 400 mV, its mass activity of 
Pt@Co SAs-ZIF-NC (0.29 and 1.93 A/mgPt) is about 4 times that of Pt/C 
(0.072 and 0.47 A/mgPt) (Fig. 4i), showing its potential usability. 

2.4. Discussion 

For the limit of Co active sites to Pt NPs, first of all, from the HRTEM 
of Pt@Co SAs-ZIF-NC, Pt@Co ZIF-NC, Pt@ZIF-NC, it can be clearly seen 
that the Pt NPs in Pt@Co SAs-ZIF-NC have a more uniform and ideal size 
and a more suitable particle distribution. Compared with Pt@ZIF-NC, 
the Co sites of Pt@Co SAs-ZIF-NC do play a role in isolating Pt NPs. In 
addition, compared with the Co NPs in Pt@Co ZIF-NC, the Co in Pt@Co 
SAs-ZIF-NC exists more in the form of single atoms, indicating that the 
single Co atom in uniform distribution can anchor Pt. Furthermore, 
relatively to commercial Pt/C, the negative shift of the binding energy is 
0.25 eV for the Pt 4f peak in Pt@Co SAs-ZIF-NC, while for Pt@Co ZIF- 
NC, with the presence of Co metallic particles, its shift is only 0.15 eV. 
This further proves the stronger interaction between Co single atoms and 
Pt NPs in Pt@Co SAs-ZIF-NC, due to the effect of Co single atoms on Pt 
NPs, which promotes the anchoring of Co to Pt. Also, the confinement of 
porous carbon can contribute to limiting the Pt growth. As a result, Pt 
NPs are homogenously restricted to a specific area and maintain a 
relatively uniform particle size, which improves the utilization of Pt. 

The excellent ORR and HER electrocatalytic activity and stability of 
Pt@Co SAs-ZIF-NC can be explained as follows: 1) More suitable particle 
size distribution and even dispersion of Pt NPs are beneficial to 
enhancing the electrocatalytic performance; 2) Co SAs-ZIF-NC as the 
support also provides a large number of active sites (such as Co-Nx) for 
the catalyst, besides, the enhanced content of pyridinic N and graphitic 
N also has a positive effect on electron transfer and catalytic activity; 3) 
The synergy between Pt NPs and Co SAs-ZIF-NC in Pt@Co SAs-ZIF-NC 
further promotes the electrocatalytic performance. Especially for ORR, 
compared with Pt/C and Co SAs-ZIF-NC, Pt@Co SAs-ZIF-NC has higher 
half-wave potential, ECSA, mass activity and stability, and is also better 
than other Pt-based catalysts such as Pt@ZIF-NC. Therefore, the syner-
gistic effect is fully demonstrated. 

3. Conclusion 

In summary, by isolating Pt nanoparticles on porous nitrogen-doped 
carbon in terms of Co single atom sites (Co SAs-ZIF-NC), strong inter-
action between Co single atoms and Pt, and confined growth of Pt 
nanoparticles in porous carbon matrix, we successfully obtained the well 
dispersed Pt nanocatalysts with ideal particle size. The prepared Pt@Co 
SAs-ZIF-NC with more active center types and sites for electrocatalysis, 
significantly increasing the use efficiency of Pt catalysts. As a result, 
whether for ORR and HER, it always possesses superior activity and 
stability than commercial platinum carbon. Its ORR mass activity at 

0.9 V in acidic media is 3 times that of commercial Pt/C catalysts, 
beyond the U.S. DOE target and most of the literature reports of Pt 
catalysts. In addition, its HER mass activity in acidic media and seawater 
is also a multiple of Pt/C. Therefore, our work provides a promising 
method for designing and constructing highly active and stable next- 
generation Pt-based catalysts with multiple active centers, which 
significantly reduces the dosage of Pt. The results show that our Pt@Co 
SAs-ZIF-NC catalyst has great application prospects in fuel cells and 
other applications. 
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