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A B S T R A C T   

Free transition metal ions (such as Fe2+, Co2+) exposed on the surface of metal organic frameworks (MOFs) 
would be highly aggregated during the carbonization process, which is not conducive to formation of M-NX 
active sites, resulting in reduced electrochemically active sites. Accordingly, to effectively suppress the free metal 
ions on the surface of MOFs and increase Fe-N4 active sites, Vitamin C (L (+)-ascorbic acid), with an ability to 
coordinate transition metals, is complexed with ferrous ions. Meanwhile, the acidity of Vitamin C can moderately 
erode the surface of MOFs materials, further accelerating the generation of holes and defects in the carbonized 
products. Compared with the control samples without introduction of Vitamin C, the iron-based (VC-MOF-Fe) 
catalyst, with obviously increased Fe-N4 active sites, exhibit significantly enhanced oxygen reduction reaction 
(ORR) and oxygen evolution reaction (OER) performance. When used in rechargeable zinc-air batteries, the peak 
power density of VC-MOF-Fe (113 mW cm− 2) is also better than that of 20% commercial Pt/C + RuO2. Inter-
estingly, the function of Vitamin C also applies to the cobalt-based catalyst (VC-MOF-Co), evidencing the uni-
versality of this strategy.   

1. Introduction 

Metal-air batteries (such as zinc-air batteries) are regarded as the 
viable energy in the future due to their high specific energy, easy 
availability of raw materials and pollution-free [1–4]. However, one of 
the biggest challenge in practical applications of zinc-air batteries is the 
slow dynamics of oxygen evolution reaction (OER) and oxygen reduc-
tion reaction (ORR) [5–9]. Although Pt/C, IrO2/RuO2 and other noble 
metal cathode catalysts can accelerate the reaction kinetics of ORR and 
OER, respectively, their high cost, insufficient resources, and poor 
durability impede the practical application of Zn-air batteries [10–15]. 
Therefore, exploring efficient and low-cost non-noble catalysts for sus-
tainable and large-scale clean energy equipment is essential. 

In recent years, various metal organic frameworks (MOFs) have been 
developed to prepare metal nanoparticles or metal oxides due to their 
structural diversity, designability, tailorability and ultra-high specific 
surface area [16–20]. However, the metal ions exposed on the surface of 
MOFs incline to condense into larger sizes particles during pyrolysis. The 

gathering of transition metal ions brings about the reduction in the 
electrochemically active surface area (ECSA) and interface free energy, 
which is not conducive to the activity of the catalyst [21,22]. Thus, 
decreasing the agglomeration of metal particles is indeed important. To 
avoid this phenomenon, various strategies have been raised, such as 
lowering the pyrolysis temperature, using oxide coatings, and so on. 
Meng et al. proposed a method to weaken the agglomeration of metal 
ions by pyrolyzing ZIF-67 at low temperature with long time processing, 
but the samples formed had a poor electrocatalytic performance [23]. 
Lately, our group coated SiO2 on the surface of ZIF-67 to avoid the rapid 
agglomeration of Co nanoparticles at high temperatures [24]. However, 
SiO2 was difficult to remove completely, and would reduce the elec-
trochemical activity of the final catalysts. Therefore, a facile method 
needs to be developed to confine the metal ions on the MOF surface, 
which not only effectively prevents metal ions from aggregation during 
pyrolysis, but also obtains insufficient degree of graphitization with rich 
defects and without subsequent purification treatment. In addition, 
Fe-N4 is the key active site in the ORR reaction process [25,26], and 
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increasing the content of Fe-N4 active sites is one of the main methods to 
improve the performance of the catalyst. Undoubtedly, the reduction of 
ferric (Fe3+) ions in the pyrolysis process promotes the formation of 
more Fe-N4 active sites. 

Herein, we choose the ZIF series and Vitamin C (L (+)-ascorbic acid) 
as the carbon source and regulator, respectively. During the preparation 
of ZIF precursors, when iron salts are added, ferric (Fe3+) ions can be 
reduced to ferrous (Fe2+) ions by Vitamin C, so as to more easily coor-
dinate with 2-methylimidazole [27]. More importantly, Vitamin C can 
react with ferrous ions to form a complex (2C6H8O6 +

Fe2+→ (C6H7O6)2Fe + 2H+), resulting in a decrease in the concentra-
tion of exposed free metal ions on the surface of the precursor and the 
formation of more Fe-N4 active sites. At the same time, the hydrogen 
ions generated by the reaction can etch the surface of MOFs, which is 

beneficial to form holes and defects [28]. As expected, after the intro-
duction of Vitamin C, the as prepared catalyst shows the significantly 
improved ORR activity under both alkaline and acidic conditions and 
OER performance in alkaline media. In addition, it can also be applied to 
long-stable rechargeable zinc-air batteries. The VC-MOF-Co catalyst was 
also synthesized by the same method, and the ORR and OER perfor-
mance in alkaline medium were significantly improved, evidencing the 
universality of this strategy. 

2. Experimental section 

2.1. Syntheses of VC-Fe/ZIF-8 

Zn(NO3)2•6H2O (4.0 mmol) was added in 36 mL of methanol 

Fig. 1. (a) Schematic synthesis process of VC-MOF-Fe and MOF-Fe; (b) SEM image, (c) STEM image with HAADF-STEM mapping, (d) TEM image, (e, f) HRTEM 
images of VC-MOF-Fe. 
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solution, Vitamin C (0.24 mmol) and Fe(NO3)3•9H2O (0.25 mmol) were 
added in 10 mL of deionized water, then mixed the two solutions with 
36 mL methanol solution containing 2-methylimidazole (32.0 mmol). 
After stirring for 24 h, the mixed solution was centrifuged, washed and 
dried in a vacuum oven to obtain samples. 

2.2. Syntheses of VC-MOF-Fe 

VC-MOF-Fe was obtained by calcining VC-Fe/ZIF-8 at 900 ◦C for 3 h 
in an argon atmosphere. For the synthesis of the remaining samples, 
please refer to the supporting literature. 

3. Results and discussion 

3.1. Structural characterization 

Before the experiment, the contents of Vitamin C and Fe 
(NO3)3•9H2O were first explored for optimal sample preparation (EIS, 
Fig. S1a, b). After confirming that the sample (VC-MOF-Fe) prepared 
with 0.25 mmol of Fe(NO3)3•9H2O and 0.24 mmol of Vitamin C had the 
best ORR activity, the role of Vitamin C in the sample was further pro-
bed. The synthesis process of VC-MOF-Fe is represented in Fig. 1a. VC- 
MOF-Fe was obtained by mixing Fe(NO3)3•9H2O, 2-Methylimidazole, 
Zn(NO3)2•6H2O and Vitamin C in methanol solution, and then 
calcining at 900 ◦C under argon atmosphere. 

The morphology and structure of all catalysts were investigated with 
scanning electron microscopy (SEM) and transmission electron micro-
scopy (TEM). Different from Fe/ZIF-8, VC-Fe/ZIF-8 (EIS, Fig. S2a, b) is 
no longer a regular rhombic dodecahedron. Obviously, the introduction 
of Vitamin C leads to morphological changes. Then, the XRD patterns of 
the precursors (EIS, Fig. S3) show that the diffraction peaks of VC-Fe/ 
ZIF-8 and Fe/ZIF-8 are almost the same as those of the original ZIF-8, 
which indicates that the structure of MOFs has not changed after the 
introduction of Vitamin C and iron salt. After high temperature pyrol-
ysis, the surface of VC-MOF-Fe forms a depression, with a unique mes-
oporous structure (Fig. 1b), which promotes the reactants to enter the 
interior of the material and effectively utilize the active sites inside [29], 
while MOF-Fe maintains the rhombic dodecahedron shape(EIS, Fig. S4). 
HAADF-STEM mapping images (Fig. 1c) further show that N, C and O 
are highly dispersed, while Fe is mainly distributed as dispersed nano-
particles. As shown in Figs. 1d, S5a, the nanoparticles are distributed on 
carbon matrix of VC-MOF-Fe. TEM and HAADF-STEM mapping images 
of MOF-Fe are displayed in the Supporting Material (EIS, Figs. S5b, S6). 
In high-resolution TEM (HRTEM) images, the lattice spacings are 0.204 
and 0.25 nm, belong to (110) plane of metal Fe particles and (311) plane 
of Fe3O4 particles (Fig. 1e, f), indicating the presence of Fe and Fe3O4 in 
VC-MOF-Fe. 

Fig. 2a shows that VC-MOF-Fe and MOF-Fe have three X-ray 
diffraction (XRD) peaks, which are attributed to C, Fe and Fe3O4, 
respectively, suggesting that iron exists in the form of iron particles and 

Fig. 2. (a) XRD patterns, (b) Raman spectrum, (c) N2 sorption isotherms of VC-MOF-Fe and MOF-Fe; (d) N1s, (e) Fe 2p spectra, (f) Fe Mössbauer spectra of VC-MOF- 
Fe; (g) N1s, (h) Fe 2p spectra, (i) Fe Mössbauer spectra of MOF-Fe. 
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iron oxides, which is consistent with the results of HRTEM. Compared 
with MOF-Fe, the diffraction peak intensity of iron element in XRD 
pattern of VC-MOF-Fe is significantly reduced, implying a decrease in 
the content of iron particles or particle size. Interestingly, similar rules 
are also found in VC-MOF-Co and MOF-Co catalysts. After the addition 
of Vitamin C, the diffraction peak intensity of the cobalt particles de-
creases significantly (EIS, Fig. S7), indicating that after treatment with 
Vitamin C, the concentration of exposed free metal ions on the surface of 
the precursor is obviously reduced. 

From Raman spectra (Fig. 2b), it shows two distinct peaks, namely D 
and G band. Notably, the ID/IG ratio of VC-MOF-Fe is 1.12, while that of 
MOF-Fe is 1.09, indicating that abundant defects exist in VC-MOF-Fe 
[30,31]. Similarly, for N-C-VC, the ID/IG ratio is 1.05, greater than 
that of N-C (1.03) (EIS, Fig. S8), while1.18 for VC-MOF-Co, higher than 
that of MOF-Co (1.14) (EIS, Fig. S9). The pore structure of samples was 
studied by N2 adsorption/desorption test. The adsorption isotherms of 
VC-MOF-Fe and MOF-Fe (Fig. 2c) belong to type IV isotherms, indi-
cating the presence of micropores and mesopores in both samples [32, 
33]. As analysis from the pore size distribution (EIS, Fig. S10), the 
number of mesopores increases in VC-MOF-Fe compared with MOF-Fe. 
The above results manifest that the addition of Vitamin C not only affects 
the distribution of particles, but also influences the morphology and 
structure in the catalyst. 

The chemical state and basic elements of the sample surface were 
investigated using XPS. It displays that the catalyst contains N, C, O and 
Fe elements, which matches the element mapping results. The high- 
resolution N 1s spectrum of VC-MOF-Fe can be subdivided into three 
peaks at 401.2, 400.1, 398.9 eV (Fig. 2d), which represent pyrrolic N 
(pyrr-N), pyridinic N (pyri-N) and graphitic N (grap-N), respectively 
[34,35]. As reported, pyri-N can facilitate the enhancement of the onset 
potential of the ORR, whereas the grap-N can enhance the 
diffusion-limited current density [36]. Compared to MOF-Fe (Fig. 2g), 
the amount of pyri-N and grap-N in VC-MOF-Fe is raised, leading to an 
increase in active sites and limiting current density. The high-resolution 
Fe 2p spectrum can be deconvoluted into six peaks (Fig. 2e, h), namely 
Fe (708 eV), Fe2p3/2 (Fe(II), Fe(III) 710.9–714.6 eV), Fe2p1/2 (Fe(II), Fe 
(III) 723.6–725.6 eV) and satellite peak (718.7 eV), indicating the 
presence of Fe, Fe(II) and Fe(III) in VC-MOF-Fe and MOF-Fe [37–39]. 
Especially, compared with MOF-Fe, the content of Fe particles in 
VC-MOF-Fe is reduced, which is consistent with the XRD result. Mean-
while, the high-resolution C 1s spectrum is divided into five bonding 
types: carbon hybridized (sp2, 284.5 eV), diamond-like carbon hybrid-
ized (sp3, 285 eV), C–N (285.6 eV), C–O (286.6 eV) and C˭O (288.3 eV) 
(EIS, Fig. S11a) [40]. Compared to MOF-Fe (EIS, Fig. S11b), the C–N 
content of VC-MOF-Fe shows a noticeable increase, indicating that 
VC-MOF-Fe embraces more active sites. In addition, the high-resolution 
O 1s spectrum can be subdivided into three peaks at 530.3, 532.3, 
533.6 eV (EIS, Fig. S12a, b), which represent Fe–O, OH− and H–OH, 
respectively [41,42]. 

To further determine the chemical state of iron in samples, 
Mössbauer spectra of Fe were investigated. The fitting parameters are 
listed in Table S1. The spectrum of VC-MOF-Fe can be divided into five 
components (Fig. 2f): FeII-N4, Ox-FeIII-N4, iron oxides, α-Fe and Fe3C 
[43–45]. For MOF-Fe, the spectrum can be divided into four components 
(Fig. 2i): FeII-N4, Ox-FeIII-N4, iron oxide and α-Fe. Compared with 
MOF-Fe, the content of α-Fe in VC-MOF-Fe significantly decreases, while 
it slightly increases for the content of iron oxides, which is consistent 
with the XRD result. Interestingly, the content of Fe-N4 in VC-MOF-Fe 
increases, especially the amount of Ox-FeIII-N4. As reported, 
Ox-FeIII-N4 is mainly responsible for ORR activity [46]. Additionally, 
through both ICP and XPS tests, the Fe content in VC-MOF-Fe and 
MOF-Fe is consistent (Table S2). Therefore, combined with the 
Mössbauer spectroscopy result, it further confirms that Vitamin C can 
react with ferrous ions to form complexes, resulting in a decrease in the 
concentration of free metal ions exposed on the surface of the precursor 
and forming more Fe-N4 active sites. 

3.2. Electrocatalytic activity and stability towards ORR 

The ORR performance of the as prepared samples was first explored. 
The cyclic voltammetry (CV) curve (Fig. 3a) shows an obvious cathode 
peak in O2-saturated electrolyte (0.1 M KOH), implying the high activity 
of VC-MOF-Fe for reducing oxygen. Linear sweep voltammetry (LSV) 
curves (Fig. 3b, c) indicate that the half-wave potential (E1/2) and 
limiting current density of VC-MOF-Fe are 0.886 V and 
− 5.80 mA cm− 2, respectively, both of which are better than MOF-Fe 
(0.862 V, − 5.45 mA cm− 2) and commercial Pt/C (0.851 V, 
− 5.62 mA cm− 2), demonstrating VC-MOF-Fe has an outstanding ORR 
performance in alkaline media. Coincidentally, after the addition of 
Vitamin C to ZIF-8 and ZIF-67, a significant increase in the half-wave 
potential is also observed (EIS, Fig. S13). Besides, the kinetic current 
density (JK) is an important evaluation parameter of ORR activity. When 
the voltage is 0.9 V and 0.85 V, theJK value of VC-MOF-Fe is 3.34 and 
17.24 mA cm− 2, respectively, which are both greater than MOF-Fe (2.09 
and 10.27 mA cm− 2). Moreover, VC-MOF-Fe also has a smallest Tafel 
slope (84 mV dec− 1) (the Tafel slopes of MOF-Fe, Pt/C, N-C-VC, N-C are 
93, 103, 142, 161 mV dec− 1, respectively) (Fig. 3d), indicating that its 
electron transfer rate is much faster [47]. Furthermore, according to K-L 
equation and LSV curves at different speeds, the electron transfer 
number of VC-MOF-Fe is 3.97, showing the four-electron oxygen 
reduction process in VC-MOF-Fe (EIS, Fig. S14a). 

Apart from outstanding ORR activity, VC-MOF-Fe also exhibits good 
stability. After 8 h testing, the normalized current of VC-MOF-Fe only 
drops by 2.9%, while that of 20% Pt/C decreases 21.6% after 3 h 
(Fig. 3e). Meanwhile, the LSV curves of VC-MOF-Fe were plotted before 
and after 5000 cycles, the E1/2 of VC-MOF-Fe fades by only 4 mV (EIS, 
Fig. S14b). In methanol-tolerance experiment (Fig. 3f), the current 
density of VC-MOF-Fe has remained 99.1% after adding 9 mL methanol, 
while the commercial Pt/C decreases rapidly, suggesting that VC-MOF- 
Fe has preferable methanol tolerance. Then, SCN- was further used to 
poison the metal-centered catalytic sites to detect the Fe-N4 active site. 
After adding 0.01 M KSCN, the ORR activity is significantly reduced 
(EIS, Fig. S15), demonstrating that Fe-N4 is indeed the active site. 

Based on the superb ORR performance of VC-MOF-Fe under alkaline 
conditions, we further studied its performance in 0.5 M H2SO4 solution. 
The E1/2 of VC-MOF-Fe is 0.753 V, slightly lower than 20% Pt/C 
(0.789 V) but significantly higher than MOF-Fe (0.719 V) (Fig. 3g). 
Electron transfer number of VC-MOF-Fe is 3.96 by using K-L equation 
(EIS, Fig. S16). In addition, durability and methanol tolerance of catalyst 
under acidic conditions were also explored by using chronoampero-
metric curves. After 12 h testing, the normalized current of VC-MOF-Fe 
only decreases by 12.7%, whereas the commercial Pt/C decreases about 
26.2% after only 8 h (Fig. 3h), indicating that VC-MOF-Fe has excellent 
stability. In the methanol-tolerance test (Fig. 3i), after adding 9 mL 
methanol, the current density of Pt/C drops sharply, while VC-MOF-Fe 
has only 2.1% decaying for the current density, showing its preferable 
resistance to methanol. 

3.3. Electrocatalytic activity and stability towards OER 

To assess the OER activity, the LSV curves on VC-MOF-Fe, MOF-Fe 
and RuO2 catalysts were recorded in 1 M KOH. Fig. 4a shows the IR- 
compensated LSV curves. The overpotential of VC-MOF-Fe is 339 mV 
(@10 mA cm− 2), which is much better than that of MOF-Fe (432 mV), 
and comparable to RuO2 (320 mV) (Fig. 4b). Similarly, after the addi-
tion of Vitamin C to ZIF-67, the overpotential decreases significantly 
(EIS, Fig. S17). The OER dynamics of catalysts was further analyzed by 
Tafel diagrams and presented in Fig. 4c. Compared with MOF-Fe 
(143 mV dec− 1), VC-MOF-Fe has a smaller Tafel slope (78 mV dec− 1), 
which is equivalent to RuO2 (72 mV dec− 1), revealing its similar OER 
kinetic process with RuO2. The superb OER activity is due to its fast 
electron transfer, which can be evaluated by electrochemical impedance 
spectroscopy (EIS) [48]. Compared with MOF-Fe, the electron transfer 
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resistance of VC-MOF-Fe is significantly low at the open circuit voltage 
(Fig. 4d), showing that the charge transfer of VC-MOF-Fe is faster than 
other catalysts. 

Besides catalytic performance, the stability is also important in 
practical applications of electrocatalysts. After 2000 CV cycles, the 
overpotential of VC-MOF-Fe only reduces by 6 mV (Fig. 4e), whereas 
RuO2 decreases about 15 mV (EIS, Fig. S18). Furthermore, the chro-
noamperometric response was performed under the overpotential of 
350 mV to evaluate the durability of VC-MOF-Fe. Fig. 4f displays that 
the current consumption of VC-MOF-Fe is only 6.9% after 8 h operation, 
indicating that it has excellent stability. In addition, the phase stability 
of VC-MOF-Fe shown in Fig. 4g after accelerated cycling test further 
reflects its durability to theOER. XPS analysis (Fig. 4h) shows that the 
peak area of Fe3+ increases after CV acceleration, indicating that the 
continuous OER promotes the gradual oxidation of Fe2+ on the elec-
trocatalyst surface [49]. In the same time, a new adsorbed oxygen peak 
appears in XPS spectrum of O 1s (Fig. 4i) at 536 eV [50,51], confirming 
that the OER would cause oxidation on the catalyst surface. 

To further understand the high catalytic performance of VC-MOF-Fe, 
double layer capacitance (Cdl) was measured to represent electro-
chemically active surface area (ECSA) [52,53]. The fitted Cdl of 

VC-MOF-Fe (33 mF cm− 2) is higher than MOF-Fe (31 mF cm− 2) (EIS, 
Fig. S19), indicating that VC-MOF-Fe has a larger electrochemically 
active surface area. 

3.4. Zinc–air battery performance 

Based on the excellent bifunctional catalytic performance of the VC- 
MOF-Fe catalyst (Table S3), and to explore the practical application 
potential of the catalyst, a rechargeable zinc–air battery was assembled 
with VC-MOF-Fe as the air cathode and zinc plate as anode, and 20% Pt/ 
C + RuO2 was fabricated as a comparison (Fig. 5a). The zinc-air battery 
based on VC-MOF-Fe shows the open circuit voltage of 1.49 V, while the 
20% Pt/C+RuO2 is only 1.43 V (Fig. 5b). The discharge/charge polar-
ization curves of VC-MOF-Fe is shown in Fig. 5c, VC-MOF-Fe exhibits a 
low potential gap, indicating it has a better recharge ability. The po-
larization curves (Fig. 5d) display that the peak power density of the VC- 
MOF-Fe-based zinc-air battery is 113 mW cm− 2, higher than 20% Pt/ 
C+ RuO2 (91 mW cm− 2). Fig. 5e illustrates the galvanostatically 
discharge curves (@5 mA cm− 2), VC-MOF-Fe displays a higher and 
more stable discharge platform (1.33 V) than 20% Pt/C + RuO2 
(1.28 V). Then, all-solid-state battery was also fabricated, which shows a 

Fig. 3. (a) CV curves in 0.1 M KOH saturated with N2 and O2; (b) LSV curves, (c) E1/2 comparison, (d) Tafel slopes of VC-MOF-Fe, MOF-Fe, 20% Pt/C, N-C-VC and N- 
C; (e) Stability test, (f) Methanol resistance test of VC-MOF-Fe and 20% Pt/C in 0.1 M KOH; (g) LSV curves of VC-MOF-Fe, MOF-Fe and 20% Pt/C in 0.5 M H2SO4; (h) 
Stability test, (i) Methanol resistance test of VC-MOF-Fe and 20% Pt/C in 0.5 M H2SO4. 
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high OCV (1.41 V), and three such batteries are able to make a ~3.4 V 
LED glow (Fig. 5f). 

Our experimental results demonstrate that VC-MOF-Fe has brilliant 
electrocatalytic activity with good long-term stability. High activity of 
VC-MOF-Fe can be attributed to the following points: Firstly, Vitamin C 
reacts with ferrous ions to form a complex, thereby reducing the con-
centration of exposed metal ions on the precursor surface, and then 
increasing Fe-N4 active sites; Secondly, the surface of VC-MOF-Fe forms 
a depression and has more mesoporous structure, which increases the 
contact area and facilitates effective contact between the reactants and 
active sites of the catalyst; Finally, the presence of rich defects 
contribute to enhancing conductivity and activity [54,55]. 

4. Conclusions 

In summary, by means of Vitamin C, we successfully designed a facile 
and novel strategy to reduce the concentration of free metal ions on the 
surface of MOFs and increase Fe-N4 active sites by complexing transition 
metal ions (Fe2+). As expected, for derivatives (VC-MOF-Fe) of MOFs 
treated with Vitamin C, we can clearly observe a decrease in metal 

particles content, and an increase of Fe-N4 active sites, leading to a 
significant improvement in oxygen electrocatalytic performance. The as 
prepared VC-MOF-Fe displayed a much enhanced ORR and OER activity 
and stability. Furthermore, the rechargeable primary zinc-air battery 
based on VC-MOF-Fe as the air cathode exhibited a higher peak power 
density, superb durability and a stable discharge platform than 20% Pt/ 
C + RuO2. In addition, the VC-MOF-Co catalyst was also synthesized 
with the same method, indicating the generality of this strategy. 
Therefore, this work opens up new research directions on reducing the 
agglomeration of surface metal ions, increasing active sites and 
designing highly efficient electrocatalysts. 
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